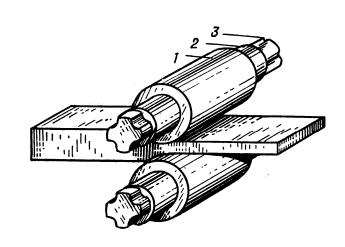


Основы автоматизации технологических процессов ОМД

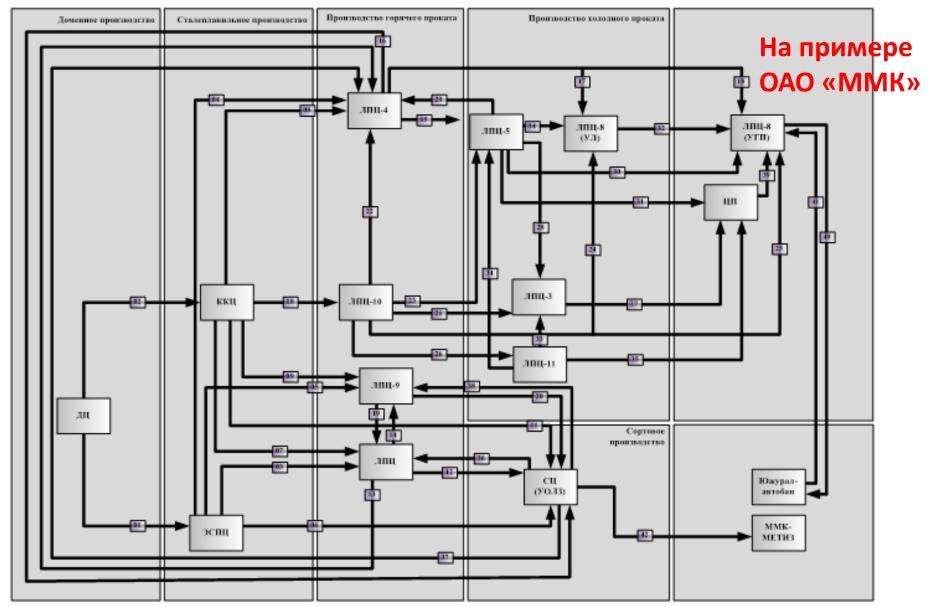
Составитель:

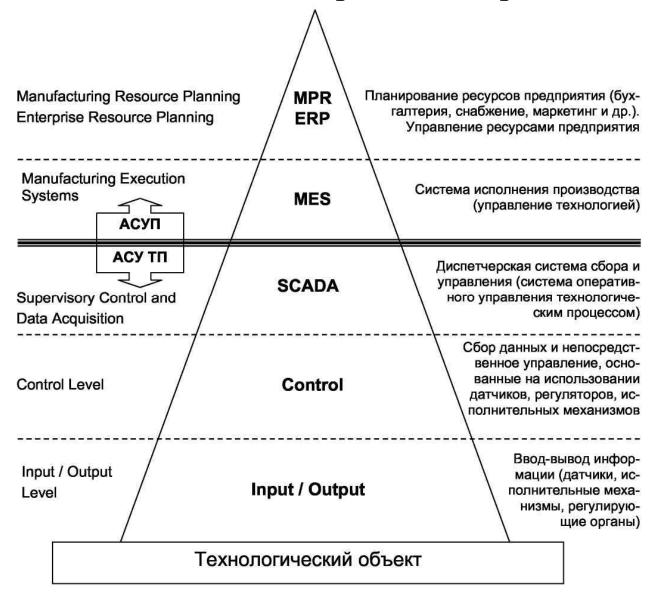
к.т.н., профессор Левандовский С.А.



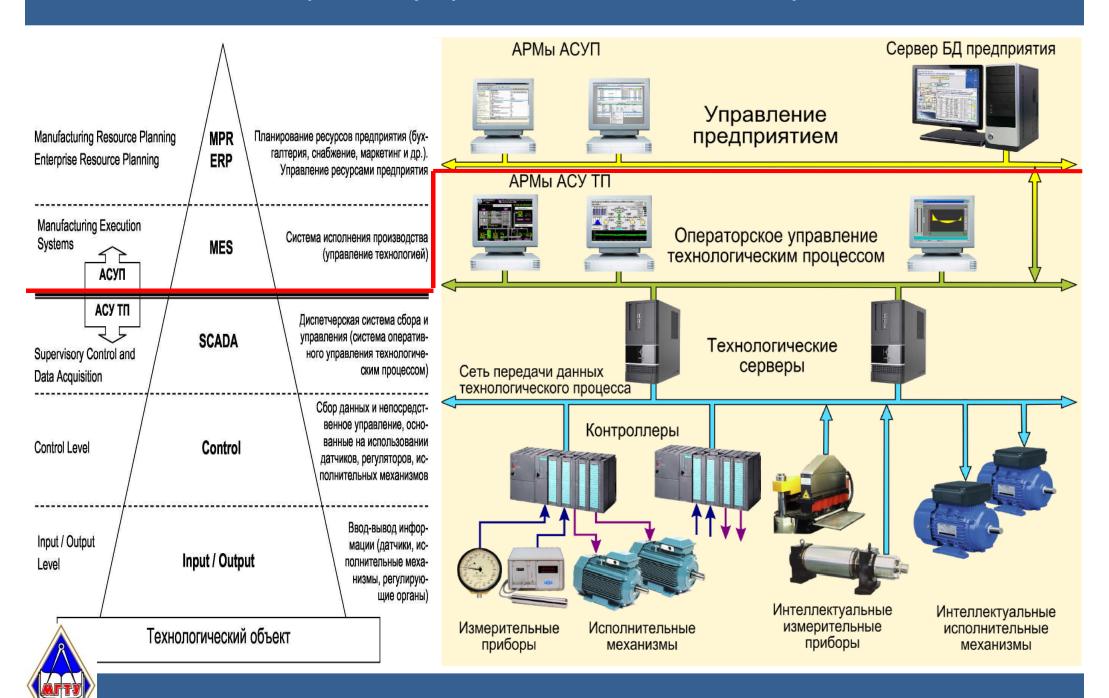
Для изучения предмета нам понадобятся знания, умения и навыки в области:

- основ металлургии;
- основ оборудования цехов ОМД;
- информатики;
- информационных технологий в металлургии;

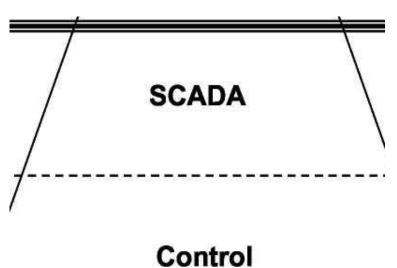




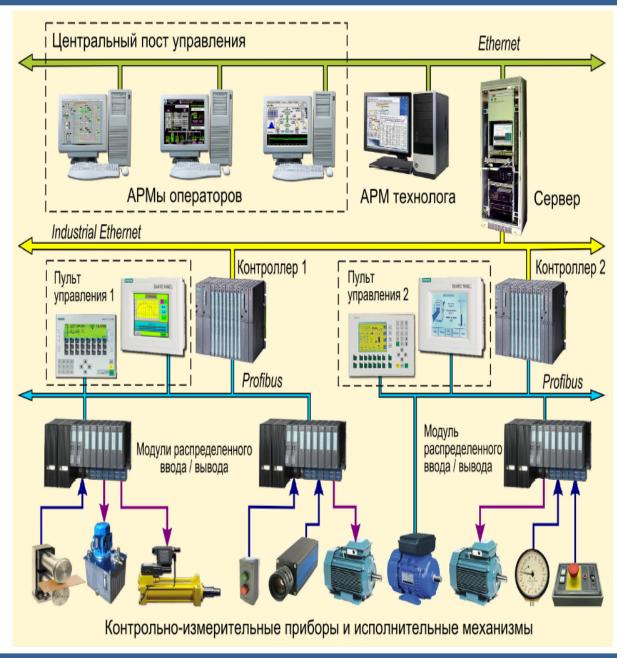
Переделы металлургические

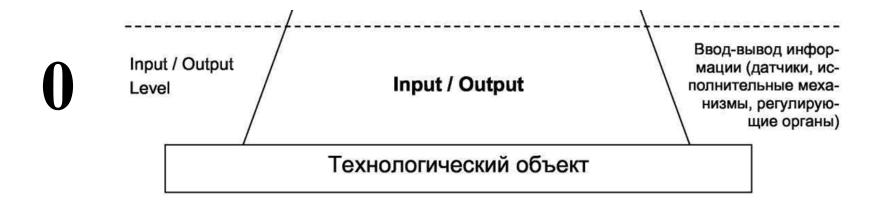


Пирамида автоматизации процессов производства

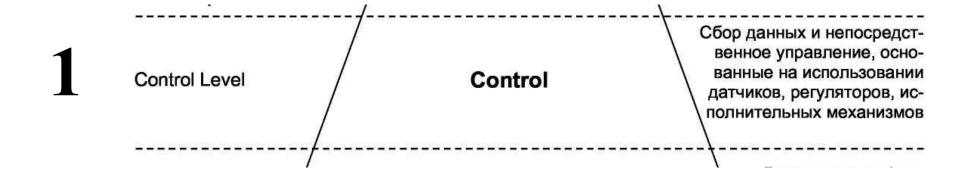


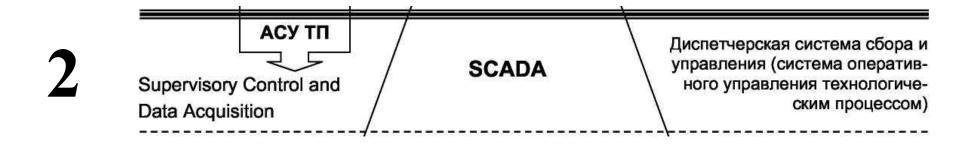
ФГБОУ ВО «Магнитогорский Государственный Технический Университет им. Г.И. Носова»



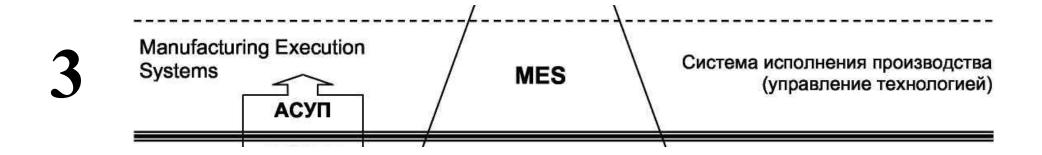

ФГБОУ ВО «Магнитогорский Государственный Технический Университет им. Г.И. Носова»

Input / Output

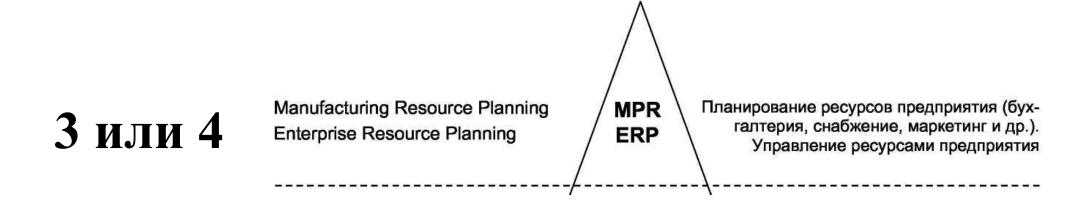

Технологический объект


Самый нижний, первый уровень представляет собой набор датчиков, исполнительных механизмов и других устройств, предназначенных для сбора первичной информации и реализации управляющих воздействий. Этот уровень называется I/O (Input/Output, ввод/вывод).

Следующий, второй уровень предназначен для непосредственного управления производственным процессом с помощью различны устройств связи с объектом (УСО), программируемых логических контроллеров (ПЛК, PLC – Programmable Logic Controller) или (и) промышленных (индустриальных) компьютеров (РС, ПК). Это уровень (Control Level – простое управление), на котором замыкаются самые «короткие» контуры управления производством.



Третий уровень называется SCADA (Supervisory Control and Data Acquisition – буквально сбор данных и диспетчерское управление). На уровне (SCADA Level) осуществляется диспетчеризация систем сбора данных и оперативное управление технологическим процессом, принимаются тактические решения, прежде всего направленные на достижение стабильности процесса.


Очевидно, что первичная информация с третьего уровня должна "добираться" до пятого, верхнего уровня, уровня принятия стратегических решений. Очевидно также, что поток сырых данных, без надлежащей обработки, послужит скорее «информационным шумом» для менеджеров и экономистов.

MES (Manufacturing Execution Systems – или системы исполнения производства). Этот уровень выполняет упорядоченную обработку информации о ходе производства продукции в различных цехах, обеспечивает управление качеством, а также является источником необходимой информации в реальном времени для самого верхнего уровня управления.

«Сверху» (самый верхний, пятый уровень), в офисах создаются информационные структуры, отвечающие за работу предприятий в целом. Это автоматизация бухгалтерского учета, управления финансами и материальнотехническим снабжением, организацией документооборота, анализом и прогнозированием и др. Этот уровень называется планированием ресурсов предприятия (MRP, Manufacturing Resource Planning) или управление ресурсами предприятий (ERP, Enterprise Resource Planning).

Основные понятия и задачи автоматизации

<u>Системы автоматической сигнализации</u> (*CAC*) предназначены для извещения обслуживающего персонала о состоянии технологической установки или протекающего в ней технологического процесса.

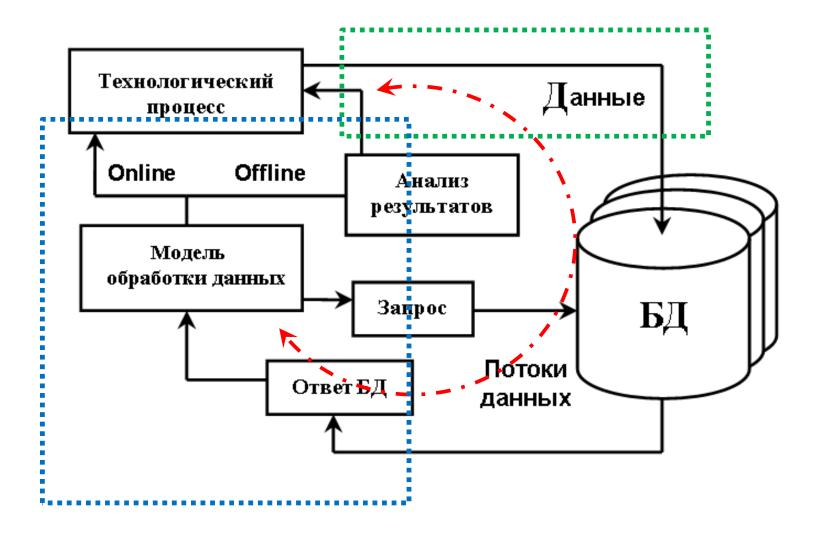
<u>Системы автоматического контроля</u> (*CAK*) осуществляют без участия человека контроль (т.е. измерение и сравнение с нормативными показателями) различных величин, характеризующих работу технологического агрегата или протекающий в нем технологический процесс. В промышленном производстве часто используют системы централизованного контроля (*CЦК*), в которых вся технологическая информация собирается и обрабатывается на центральном пульте управления.

<u>Системы автоматической блокировки и защиты</u> служат для предотвращения возникновения аварийных ситуаций в агрегатах и устройствах.

<u>Системы</u> автоматического пуска и останова обеспечивают включение, переключение и отключение различных приводов и механизмов агрегата или технологической установки по заранее заданной программе.

<u>Системы автоматического управления</u> (САУ) предназначены для управления работой тех или иных технических устройств и агрегатов или протекающими в них технологическими процессами.

Основные понятия и задачи автоматизации


<u>Управлением</u> в широком смысле слова называется организация какоголибо процесса, обеспечивающего достижение поставленной цели.

Целями управления технологическими процессами и агрегатами могут быть:

- поддержание постоянного значения некоторой физической величины с заданной точностью;
- изменение величины по определенной, заранее заданной программе;
- получение оптимального значения величины или некоторого обобщающего комплекса величин (максимальная производительность агрегата, минимальная стоимость продукта, минимальное время перехода объекта из одного состояния в другое) и т.д.

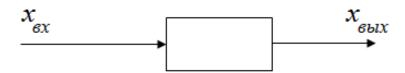
Взаимодействие математической модели технологического процесса с базой данных для управления объектом

Основные понятия и задачи автоматизации

Автоматическое управление производится с помощью автоматически действующих управляющих устройств. Объект управления и управляющее устройство составляют систему автоматического управления (САУ).

При наиболее простых целях управления (поддержание постоянного значения величины, изменение величины по заданной программе и др.) процесс управления называют регулированием. Объекты управления - объектами регулирования (**OP**), управляющие устройства - автоматическими регуляторам, а системы автоматического управления - системами автоматического регулирования (**CAP**).

Основные понятия и задачи автоматизации

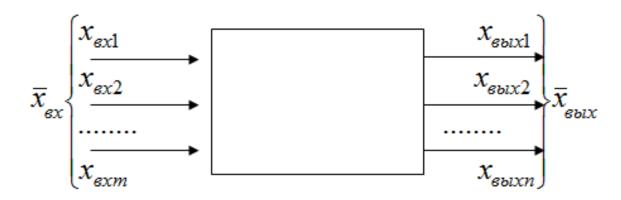

В сложных системах управления, особенно с использованием ЭВМ, управлением называют процесс выработки необходимого решения, а регулированием - его реализацию на объекте.

Структурная схема системы

автоматического регулирования одной величины

Взаимодействие элементов системы принято изображать с помощью структурных схем, на которых элементы показываются простыми геометрическими фигурами, а связи между ними - соединительными линиями со стрелками, показывающими направление передачи сигнала.

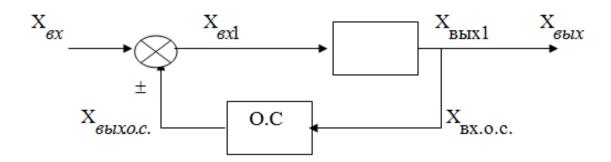
Элемент системы автоматического регулирования с одной входной и одной выходной величинами.


В любом элементе системы (рис.) можно выделить m физических величин (переменных), воздействующих на этот элемент и называемых <u>входными</u> величинами $x_{\text{вх1}}, x_{\text{вх2}}, \dots, x_{\text{вхm}}$ (группа входных величин \overline{x}_{BX}).

$$\overline{x}_{ex} = \left\{ x_{ex1}; \dots; x_{exm} \right\}$$

На выходе элемента имеется п величин $x_{\text{вых1}}, x_{\text{вых2}}, ..., x_{\text{выхn}},$ характеризующих результаты протекающих в нем процессов и называемых выходными величинами (на рис группа выходных величин $\overline{x}_{\text{вых}}$).

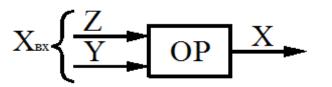
$$\overline{x}_{\text{ebix}} = \left\{ x_{\text{ebix1}}; \dots; x_{\text{ebixn}} \right\}$$


Элемент системы автоматического регулирования с несколькими входными и выходными величинами.

Каждая входная величина воздействует на одну или несколько выходных величин; в общем случае $m \neq n$. В простейших случаях элемент имеет одну входную и одну выходную величины (рис.) и значение $X_{\text{вых}}$ полностью определяется значением $X_{\text{вх}}$.

Обычно через данный элемент существует однонаправленность воздействия (элемент обладает детектирующими свойствами), т.е. X_{BX} оказывает влияние на X_{BMX} , но не наоборот.

В более сложных случаях выходная величина элемента X_{вых} может оказывать обратное воздействие на его вход. При этом говорят о наличии <u>обратной связи</u>, которая на структурной схеме (рис.) представлена элементом обратной связи (ОС).



Элементы системы автоматического регулирования с обратной связью.

Обратная связь называется положительной, если ее введение увеличивает значение выходной величины $X_{\rm BMX}$ (по сравнению со значением $X_{\rm BMX}$ без обратной связи) и отрицательной, если уменьшает значение $X_{\rm BMX}$. При положительной обратной связи выходная величина элемента обратной связи $X_{\rm O.C.}$ суммируется с входной величиной $X_{\rm BX}$, при отрицательной — вычитается. Таким образом, входная величина основного элемента при введении обратной связи:

$$x_{ex1} = x_{ex} \pm x_{o.c}$$

Структурная схема объекта регулирования с несколькими входными величинами

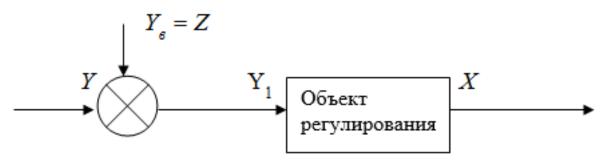
На вход объекта регулирования (рис) поступают два типа величин Хвх:

- внешние возмущающие воздействия (возмущения) z;
- и регулирующие (управляющие) воздействия у.

<u>Возмущающими</u> называются воздействия, которые выводят объект из состояния равновесия, т.е. нарушают его материальный или энергетический баланс.

<u>Регулирующие (управляющие)</u> воздействия представляют собой воздействия, восстанавливающие прежнее равновесие объекта или переводящие его в новое состояние равновесия.

В технических объектах и возмущающие, и регулирующие воздействия сводятся к изменению подачи (отвода) вещества или энергии, только первые возникают стихийно, вторые осуществляются целенаправленно. Совершенно очевидно, что для осуществления регулирующих воздействий требуются соответствующие ресурсы вещества или энергии, без которых управление невозможно.


<u>Выходная</u> величина объекта х характеризует состояние объекта и называется регулируемой (управляемой) величиной (в общем случае объект регулирования имеет много входных и выходных величин — многомерный объект).

Таким образом, на вход объекта поступают два типа входных величин **z** и **y**, действующих по разным каналам.

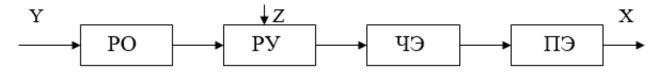
Структурная схема системы автоматического регулирования одной величины

В простейших случаях, когда и возмущающее $z=y_B$, и регулирующее у воздействия осуществляется по одному каналу, объект регулирования можно свести к элементу с одной входной ($y_1=y+y_B$) и одной выходной величиной (рис.), называемому одномерным объектом.

Структурная схема одномерного объекта регулирования:

х - регулируемая величина

z=y_в - возмущающее воздействие;


у – регулирующее воздействие.

Объект регулирования может быть разделен на более простые элементы, отличающиеся по выполняемым функциям (рис);

- регулируемый участок (собственно технологический процесс или агрегат);
- чувствительный элемент, дающий информацию о значении регулируемой величины;
- преобразующий элемент, предназначенный для преобразования сигнала чувствительного элемента в более удобную форму по величине или физической природе;
- регулирующий орган, предназначенный для реализации регулирующего воздействия у на объекте.

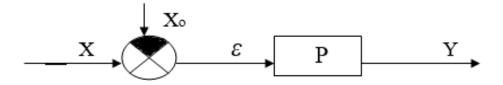
Структурная схема системы автоматического регулирования одной величины

Развернутая структурная схема объекта регулирования:

РО – регулирующий орган;

РУ – регулируемый участок;

ЧЭ – чувствительный элемент;


ПЭ – преобразующий элемент.

Чувствительный и преобразующий элементы образуют датчики систем автоматики.

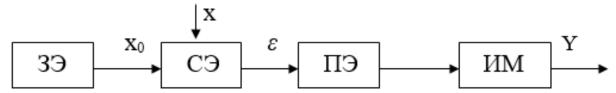
Объекты регулирования, которые возможно характеризовать значением регулируемой величины *X* в одной точке пространства, называются объектами регулирования с сосредоточенными параметрами.

Некоторые другие объекты необходимо характеризовать значением регулируемой величины *X* в нескольких точках пространства (температура металла по длине зоны вторичного охлаждения в МНЛЗ, давление газов по высоте доменной печи) или распределенными в пространстве регулирующими воздействиями. Такие объекты называются объектами с распределенными параметрами.

Структурная схема регулятора:

Y – регулирующее воздействие;

х - регулируемая величина;


х₀ – заданное значение регулируемой величины;

 ε – отклонение регулируемой величины x от заданного значения x_0 ...

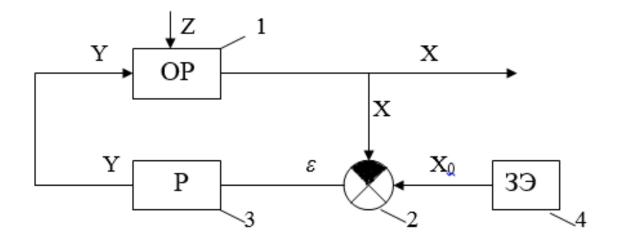
На рис представлена структурная схема регулятора, который имеет одну выходную величину y (регулирующее воздействие) и две входные - регулируемую величину X и заданное значение регулируемой величины X_0 (задающее воздействие). Величины X и X_0 сравниваются между собой, и вырабатывается одна входная величина $\varepsilon = X_0 - X$, называемая отклонением регулируемой величины от заданного значения.

Величина $\varepsilon(t)$ называется также <u>ошибкой регулирования</u> и имеет размерность регулируемой величины.

Развернутая структурная схема регулятора:

3Э – задающий элемент;

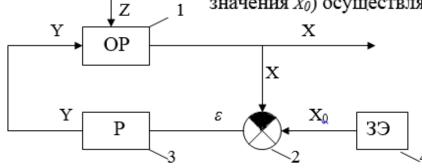
СЭ – сравнивающий элемент;


ПЭ – преобразующий элемент;

ИМ – исполнительный механизм.

- задающий элемент (задатчик), позволяющий вручную установить заданное значение регулируемой величины X₀;
- <u>сравнивающий элемент</u>, вырабатывающий величину отклонения $\varepsilon = X_0 X_0^2$
- преобразующий элемент, преобразующий величину отклонения ε в соответствии с законом регулирования, реализуемом регулятором;
- исполнительный механизм, предназначенный для оказания регулирующего воздействия у на объект.

Если соединить объект и регулятор на структурной схеме в соответствии с принятыми обозначениями величин, то получится структурная схема системы автоматического регулирования одной величины (рис.).


Структурная схема САР одной величины в укрупненном виде.

В сравнивающий элемент 2 поступает регулируемая величина X - выходная величина всей системы регулирования и объекта регулирования 1. Также в сравнивающий элемент 2 поступает заданное значением регулируемой величины X_0 , которое вручную устанавливается задатчиком 4. В сравнивающем элементе происходит сравнение этих сигналов и вырабатывается величина отклонения $\varepsilon = X_0 - X$. Регулятор 3, получая сигнал отклонения $\varepsilon = X_0 - X$, в соответствии с законом регулирования (алгоритмом управления) вырабатывает регулирующее воздействие y, которое поступает на вход объекта регулирования 1. Это регулирующее воздействие соответствует, например, перемещению выходного вала исполнительного механизма и равно перемещению регулирующего органа. Оно направлено на уменьшение и, в конечном итоге, на устранение отклонения ε , возникающего в результате возмущающих воздействий z.

В рассматриваемой системе автоматического регулирования существует замкнутый контур регулирования, в котором регулятор 3 осуществляет отрицательную обратную связь. Такие САР называют замкнутыми системами или системами с регулированием по отклонению.

Роль человека в такой системе сводится только к установке задания регулятору; в остальном, стабилизация регулируемой величины (поддерживание заданного значения X_0) осуществляется без участия человека, т.е. автоматически.

На рис показана структурная схема той же системы автоматического регулирования в развернутом виде с указанием функциональных элементов объекта регулирования и регулятора (сравнивающий и задающий элементы не включены в состав регулятора).

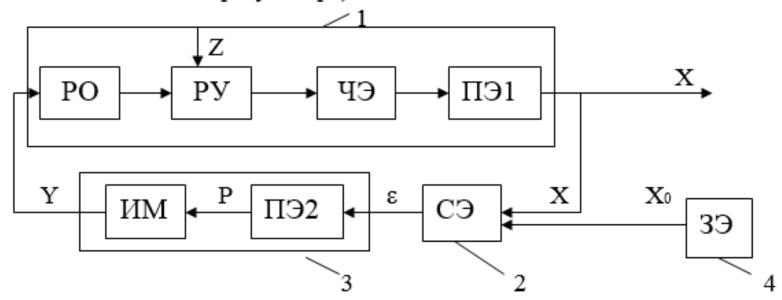


Рис Структурная схема САР одной величины в развернутом виде.

Элементы автоматики чрезвычайно разнообразны по выполняемым функциям, конструкции, принципу действия, характеристикам, физической природе преобразуемых сигналов и т.д.

- 1. В зависимости от того, как элементы получают энергию.
- 2. В зависимости от энергии на входе и выходе.
- 3. По выполняемым функциям в системах регулирования и управления.

1) В зависимости от того, как элементы получают энергию, необходимую для преобразования входных сигналов, они делятся на пассивные и активные.

<u>Пассивные элементы автоматики</u> — это элементы, у которых входное воздействие (сигнал X_{BX}) преобразуется в выходное воздействие (сигнал X_{BX}) за счёт энергии входного сигнала (например, редуктор).

<u>Активные элементы автоматики</u> для преобразования входного сигнала используют энергию от вспомогательного источника (например, двигатель, усилитель).

- 2) В зависимости от энергии на входе и выходе элементы автоматики подразделяются на:
- электрические;
- **гидравлические**;
- пневматические;
- механические;
- комбинированные.

- 3) По выполняемым функциям в системах регулирования и управления элементы автоматики подразделяются на:
- датчики;
- усилители;
- исполнительные устройства;
- реле;
- вычислительные элементы;
- согласующие элементы;
- вспомогательные элементы и т.д.

<u>Датчики</u> воспринимают поступающую на их вход информацию об управляемой величине объекта управления и преобразуют её в форму, удобную для дальнейшего использования в устройстве автоматического управления. Большинство датчиков преобразует входной неэлектрический сигнал $x_{\text{вх}}$ в выходной электрический сигнал $x_{\text{вых}}$. В зависимости от вида входного неэлектрического сигнала $x_{\text{вх}}$ выделяют:

- датчики механических величин (датчики перемещения, датчики скорости, датчики ускорения и т.д.);
- датчики тепловых величин (датчики температуры);
- датчики оптических величин (датчики излучения) и т.д.

С метрологической точки зрения понятие «датчик» больше близко средству измерения, которое называется <u>преобразователь</u>.

<u>Усилители</u> - это элементы автоматики, которые осуществляют количественное преобразование, усиление мощности входного сигнала $\mathbf{x}_{\mathrm{вx}}$. В некоторых случаях одновременно с количественным преобразованием, усилители осуществляют и качественное преобразование (например, преобразование постоянного тока в переменный, в пневматических и гидравлических усилителях осуществляется преобразование перемещения в изменение давления).

В зависимости от вида энергии, получаемой усилителем, последние делятся на:

- электрические;
- гидравлические;
- пневматические;
- электрогидравлические;
- электропневматические.

Исполнительные устройства относятся к элементам автоматики, создающим управляющие воздействия на объект управления. Они изменяют состояние или положение регулирующего органа объекта таким образом, чтобы регулируемый параметр соответствовал заданному значению. К исполнительным устройствам, создающим управляющее воздействие в виде силы или вращающего момента, относятся силовые электромагниты, электромагнитные муфты, двигатели.

Двигатели в зависимости от вида применяемой для работы энергии могут быть:

- электрическими;
- гидравлическими;
- пневматическими.

В качестве исполнительных устройств, изменяющих состояние регулирующего органа, могут использоваться усилители или реле.

<u>Реле</u> — это элементы автоматики, у которых изменение выходного сигнала $(X_{вых})$ происходит дискретно (т.е. скачкообразно) при достижении входным сигналом $(X_{вх})$ определённого значения, вызывающего срабатывание реле.

Это значение входного сигнала называется уровнем срабатывания реле.

Мощность входного сигнала (x_{BX}) , вызывающего срабатывание реле, значительно меньше мощности, которой реле может управлять. Поэтому реле используется и как усилительный, и как исполнительный элемент.

Реле часто используются и как автоматически управляемые коммутаторы сигналов в многоканальных системах сбора и передачи данных, в которых обрабатывается информация от десятков, сотен и даже тысяч датчиков. Они применяются также в системах контроля, сигнализации, блокировки и защиты.

Вычислительные элементы в устройствах автоматического управления осуществляют математические преобразования с поступающими на их вход сигналами.

В простом случае вычислительные элементы выполняют математические операции, такие как алгебраическое суммирование, дифференцирование, интегрирование, логическое сложение, логическое умножение и т.д.

В замкнутых САУ необходимо осуществлять суммирование сигнала датчика и сигнала обратной связи. В корректирующих устройствах используется дифференцирование и интегрирование сигналов. Для выполнения этих операций главным образом используются вычислительные элементы аналогового типа.

В более сложных случаях в качестве вычислительного элемента может использоваться микропроцессор, специализированные и унифицированные ЭВМ цифрового и аналогового типов или комплекс этих машин. Такие задачи автоматического управления, как оптимизация, создание адаптивных (приспосабливающихся) САУ, использование алгоритмов управления, основанных на вероятностных и статистических методах обработки сигналов, невозможно осуществить без применения ЭВМ.

Классификация элементов автоматики

Вспомогательные элементы включаются в устройство автоматического управления для улучшения его параметров, расширения функциональных возможностей основных элементов и т.д.

В качестве согласующих элементов часто используют трансформаторы, редукторы, позволяющие согласовать параметры исполнительного элемента с параметрами объекта управления.

В системах автоматического управления, в которых качестве вычислительного элемента используется микропроцессор или ЭВМ, возникает необходимость согласования ЭВМ с датчиками информации и исполнительными элементами аналогового типа. Для этой цели на входе ЭВМ устанавливаются аналого-цифровые преобразователи (АЦП). АЦП преобразуют механический сигнал (перемещения, скорости и т.д.) или электрический сигнал (напряжения, силы тока, сопротивления и т.д.), получаемый от аналоговых датчиков, в дискретный кодовый сигнал, способный восприниматься ЭВМ.

Управляющее воздействие в таких системах получают в дискретной форме как результат обработки в ЭВМ поступившей информации.

Классификация элементов автоматики

• •

Если в устройстве автоматического управления в качестве исполнительного элемента используются электродвигатели постоянного или переменного тока, электромагнитные муфты, усилители мощности постоянного или переменного тока и т.д., то возникает потребность обратного преобразования дискретного сигнала ЭВМ в аналоговый сигнал, воспринимаемый исполнительным элементом.

Эта задача решается с помощью цифро-аналоговых преобразователей (ЦАП).

Они преобразуют кодовый сигнал, полученный от ЭВМ, в перемещение, напряжение, ток, частоту и т.д.

Классификация элементов автоматики

В качестве вспомогательных элементы автоматики могут также выступать стабилизаторы напряжения или тока, коммутаторы и распределители, генераторы напряжения специальной формы («пила»), формирователи импульсов, индикаторные и регистрирующие приборы, сигнальные и защитные устройства. Эти элементы автоматики, не являясь принципиально необходимыми для работы устройства автоматического управления, в то же время позволяют увеличить точность и стабильность его работы, облегчают наладку и эксплуатацию, расширяют возможности использования этого устройства при создании САУ.

Схемы автоматизации являются основными чертежами, определяющими построение системы автоматического управления технологической установкой. Системы автоматизации на этих схемах представляют в виде блоков автоматического контроля управления и регулирования, дающих полное представление об оснащении объекта приборами и средствами автоматизации, включая средства телемеханики и вычислительной техники.

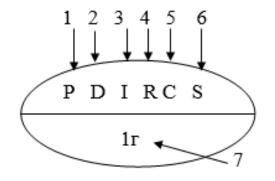
Основные условные изображения приборов и средств автоматизации нормированы стандартом **ГОСТ 21.404-85**.

Для обозначения измеряемых и регулируемых величин и функциональных признаков приборов приняты прописные буквы латинского алфавита.

Наименование	Обозначение
Первичный измерительный преобразователь (датчик), прибор (контролирующий, регулирующий): Базовое обозначение:	<u>Ø 10</u>
Допускаемое значение:	2 15
Прибор устанавливаемый на щите:	\ominus
Исполнительный механизм:	Ø <u>5</u>
Регулирующий орган:	
Линия связи:	
Пересечение линий связи: - без соединения друг с другом; - с соединением между собой.	+

Обозначение	Измеряемая Величина		Функции, выполняемые прибором		
латинской буквы	Основное значение первой буквы	Дополнительное значение, уточняющее значение, первой буквы	Отображение информации	Формирование выходного сигнала	Дополнительное значение
1	2	3	4	5	6
Α			Сигнализация	_	_
В	Топливо, горение		1		_
С			1	Регулирование, управление	_
D	Плотность	Разность, Перепад		_	_
E	Любая электрическая величина				Чувствительный элемент
F	Расход	Соотношение, доля, дробь	_	_	_
G	Размер, положение, перемещение	_	_	_	_
Н	Ручное воздействие	_	_	_	Верхний предел измеряемой величины
I	_	_	Показание	_	_
J	Автоматическое переключение	_	_	_	_

Обозначение	Измеряемая Величина		Функции, выполняемые прибором		
латинской буквы	Основное значение первой буквы	Дополнительное значение, уточняющее значение, первой буквы	Отображение информации	Формирование выходного сигнала	Дополнительное значение
К	Время, временная программа	_	_	_	Станция управления
L	Уровень	_	_	_	Нижний предел измеряемой величины
M	Влажность	_	_	_	_
O, N	Резервные буквы	_	_	_	_
Р	Р Давление, вакуум		_	_	_
Q	Величина, характеризующая качество: состав, концентрацию и т.д.	Интегрирование, суммирование по времени	_	_	_



Обозначение	Измеряемая Величина		Функции, выполняемые прибором		
латинской буквы	Основное значение первой буквы	Дополнительное значение, уточняющее значение, первой буквы	Отображение информации	Формирование выходного сигнала	Дополнительное значение
R	Радиоактивность	_	Регистрация	_	_
S	Скорость, частота	_	_	Включение, переключение отключение, сигнализация	_
Т	Температура	_	_		Дистанционная передача
U	Несколько разнородных измеряемых величин	_	_	_	_
V	Вязкость	_	_	_	_
W	Macca	_		_	_
Y	_	_	Преобра- зование	_	_

В верхней части окружности, обозначающей прибор, проставляют буквенное обозначение измеряемой величины и функционального признака прибора, в нижней — позиционное обозначение, служащее для нумерации. Порядок расположения буквенных обозначений следующий:

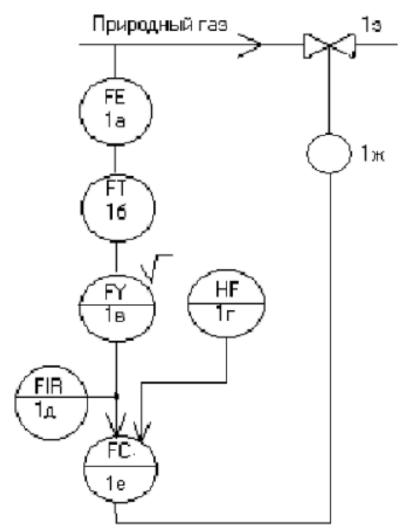
- 1) обозначение основной измеряемой величины;
- обозначение, уточняющее (если это необходимо), основную измеряемую величину;
- обозначение функционального признака прибора: если их несколько, то порядок обозначений следующий: IRCSA.
- В нижней части окружности показывают позиционное обозначение, состоящее из арабской цифры и русской буквы.

Схемы автоматизации технологических процессов

- Основное обозначение измеряемой величины: P давление.
- Уточняющее обозначение измеряемой величины: D перепад.
- 3;4;5;6) Функциональные признаки прибора: І показание, R–регистрация, С – регулирование, S – переключение.
- Позиционное обозначение прибора, включающееся в спецификацию 1г.
 Следовательно, прибор, показанный на примере, предназначен для показания, регистрации, регулирования и переключения при определенном значении перепада давления. Прибор устанавливается на щите.

Примеры построения условных обозначений

/	тримеры построения условных обозначении					
№ п/п	Обозначение	Наименование				
1	TE	Первичный измерительный преобразователь (чувствительный элемент) для измерения температуры, установленный по месту. Например: преобразователь термоэлектрический (термопара), термопреобразователь сопротивления, термобаллон манометрического термометра, датчик пирометра и т.п.				
2	71	Прибор для измерения температуры показывающий, установленный по месту. Например: термометр ртутный, термометр манометрический и т.п.				
3	77	Прибор для измерения температуры показывающий, установленный на щите. Например: милливольтметр, логометр, потенциометр, мост автоматический и т.п.				
4	ŢŢ	Прибор для измерения температуры бесшкальный с дистанционной передачей показаний, установленный по месту. Например: термометр манометрический (или любой другой датчик температуры) бесшкальный с пневмо- или электропередачей				
5	TR	Прибор для измерения температуры одноточечный, регистрирующий, установленный на щите. Например: самопишущий милливольтметр, логометр, потенциометр, мост автоматический и т.п.				
6	TJR)	Прибор для измерения температуры с автоматическим обегающим устройством, регистрирующий, установленный на щите. Например: многоточечный самопишущий потенциометр, мост автоматический и т.п.				
7	TRE	Прибор для измерения температуры регистрирующий, регулирующий, установленный на щите. Например: любой самопишущий регулятор температуры (термометр манометрический, милливольтметр, логометр, потенциометр, мост автоматический и т.п.)				


Схемы автоматизации технологических процессов

TT	_	_			
Попопиительные	OUUSABAREARA	Theohha	зователец и	вычислительных	VCTOORCTD
дополингольные	0003na ichnii	HDCOOpa	Sobarenen n	i bbi inchini chbibia	yciponcib
					J 1

Наименование	Обозначение
1. Род энергии сигнала:	
электрический	Е
пневматический	P
гидравлический	G
2. Виды форм сигнала:	
аналоговый	A
дискретный	D
3. Операции, выполняемые вычислительным устройством:	
суммирование	Σ
умножение сигнала на постоянный коэффициент k	k
перемножение двух и более сигналов друг на друга	×
деление сигналов друг на друга	:
возведение величины сигнала f в степень n	<i>f</i> ⁿ
извлечение из величины сигнала корня степени n	$\sqrt[n]{}$
логарифмирование	lg
дифференцирование	dx/dt
интегрирование	ſ
изменение знака сигнала	x(-1)
ограничение верхнего значения сигнала	max
ограничение нижнего значения сигнала	min
4. Связь с вычислительным комплексом:	
передача сигнала на ЭВМ	B_i
вывод информации с ЭВМ	B_0

Рассмотрим схему функциональной структуры САР расхода топлива в агрегате.

Спецификация

Обозначение	Наименование	Количество	Примечание
1a	Диафрагма камерная ДКС	1	
16	Манометр Сапфир 22ДД	1	
1в	Блок извлечения корня БИК –1	1	
1r	Ручной задатчик РЗД-22	1	
1д	Показывающий прибор Диск- 250и	1	
1e	Регулятор давления Ремиконт Р-130	1	
1ж	Исполнительный механизм МЭО	1	
13	Поворотная заслонка	1	

Структурная схема системы автоматического регулирования одной величины

На рис показана структурная схема той же системы автоматического регулирования в развернутом виде с указанием функциональных элементов объекта регулирования и регулятора (сравнивающий и задающий элементы не включены в состав регулятора).

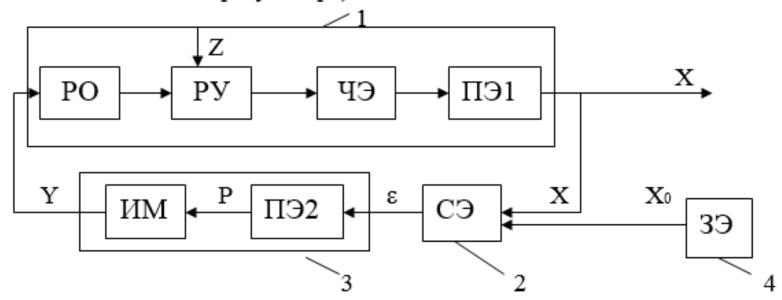


Рис Структурная схема САР одной величины в развернутом виде.

Системы оптимального управления

В настоящее время при разработке АСУ ТП и АСУП большое внимание уделяется системам оптимального управления. В этих системах целью управления является обеспечение наилучшего (максимального или минимального) значения критерия оптимального управления (критерия оптимальности). В качестве критерия оптимального управления могут быть выбраны различные технические или экономические показатели, например время перехода из одного состояния в другое, среднее отклонение какой-либо регулируемой величины от заданного значения в определенный промежуток времени, производительность объекта, показатели качества продукции, затраты сырья или энергии, себестоимость продукции.

В общем случае критерий оптимального управления **I** зависит от управляемой величины **X**, возмущений (помех) **Z**, управляющего воздействия (управления) **U**, а также от времени τ , т.е. $\mathbf{I} = \mathbf{F}(\mathbf{x}, \mathbf{z}, \mathbf{u}, \tau)$.

Системы оптимального управления

Поскольку $\mathbf{x} = \mathbf{x}(\mathbf{\tau})$, $\mathbf{z} = \mathbf{z}(\mathbf{\tau})$, $\mathbf{u} = \mathbf{u}(\mathbf{\tau})$ являются функциями времени, то критерий оптимальности является функционалом (говоря условно "функцией функций"). Задача оптимального управления состоит в отыскании такого управляющего воздействия $\mathbf{u}(\mathbf{\tau})$, которое обеспечивает экстремальное значение функционалу **Imin** или **Imax**. Критерий оптимальности часто имеет интегральную форму:

$$I = \int_{\tau_1}^{2} f(x, z, u, \tau) d\tau$$

Например, можно создать оптимальную систему управления, потребовав обеспечения минимума функционала:

$$I = \int_{0}^{\infty} \varepsilon^{2}(\tau) d\tau$$

т.е. систему, которая обеспечивала бы минимальное значение интеграла квадрата отклонения регулируемой величины от заданного значения и, следовательно, наибольшую точность поддержания заданного значения в процессе регулирования.

Системы оптимального управления

Критерий оптимального управления выбирается (разрабатывается) достаточно условно в зависимости от требований производства, стремлений разработчика системы и т.п. поэтому не существует оптимального управления "вообще", а есть оптимальное управление в определённом (заданном) смысле.

В любой системе управления есть ограничения на регулируемые величины и управляющие воздействия, обусловленные разными причинами: стойкостью агрегата, (например, максимально допустимой температурой футеровки), технологией производства (максимально допустимая температура металла в печи), ресурсами управления (максимально возможная тепловая мощность в мартеновской печи, расход кислорода в конвертере), скоростью изменения управляющих воздействий и т.п. Учитывая сказанное можно дать ещё одно определение оптимального управления: оптимальным, в определённом (заданном) смысле управлением называется динамический процесс, целесообразно использующий ресурсы системы для достижения при данных ограничениях экстремума критерия оптимального управления.

В сложном металлургическом процессе часто под оптимизацией приходится понимать поиск компромиссного решения при выборе наиболее приемлемых параметров технологического процесса для конкретных условий работы агрегата (влияние соседних агрегатов, наличие ресурсов управления, ограничения и др.). Такие задачи в рамках АСУ ТП во многих случаях можно решать лишь с участием опытных операторов-технологов в диалоговом режиме их работы с ЭВМ.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ

МАТЕМАТИЧЕСКИЕ МОДЕЛИ

Важнейшее требование к математическим моделям — время необходимое для решения задачи управления.

Однозначно предсказуемое время реакции автоматизированной системы называется работой в режиме реального времени.

Для эффективной **работы в режиме реального времени** необходимы:

- операционные системы реального времени,
- базы данных реального времени,
- программное обеспечение реального времени.

- 1. По методу управления
- 2. По характеру использования информации
- 3. По результатам работы в установившемся состоянии
- 4. По числу регулируемых величин
- 5. По характеру изменения регулирующих воздействий во времени
- 6. По виду энергии применяемой для работы

1. По методу управления

а. системы, **не приспосабливающиеся** к изменяющимся режимам работы объекта регулирования;

Этот класс систем включает в себя три типа:

- 1). **Стабилизирующие системы** обеспечивают поддержание регулируемой величины на постоянном заданном значении. Например: система автоматического регулирования, поддерживающая заданное значение расхода воздуха на дутье доменной печи.
- 2). **Программные системы** обеспечивают изменение регулируемой величины во времени по заранее заданной программе. Например: система автоматического регулирования, обеспечивающая изменение расхода воздуха по ходу продувки в конвертере.
- 3). Следящие системы обеспечивающие изменение регулируемой величины в заданном соотношении с управляющим воздействием, которое изменяется произвольным образом, не зависящим от данной системы. Например: система автоматического регулирования соотношения топливо воздух при управлении сжиганием топлива в мартеновской печи.
 - **b.** приспосабливающиеся системы, т.е. **адаптивные**.

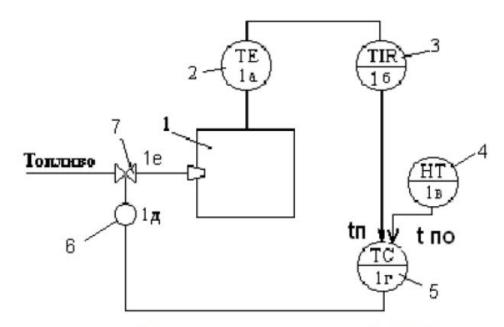
b. приспосабливающиеся системы, т.е. **адаптивные**.

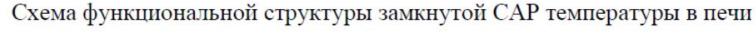
Приспосабливающиеся системы — это такие системы, в которых параметры управляющих устройств или алгоритмы управления автоматически и целенаправленно изменяются для осуществления управления объектом, причем характеристики объекта или внешнее воздействие на него могут изменяться непредвиденным образом. Адаптивная система способна изменить свою структуру, параметры или программу действий в процессе управления. Особенный случай адаптивной системы это — экстремальные системы, которые автоматически ищут экстремум регулируемой величины, а так как его положение изменяется в процессе работы объекта, система автоматически изменяет направление поиска, скорость поиска и т. д.

Примером экстремальной системы является САР температуры в печи, отапливаемой газом.

Адаптивные системы реализуются с использованием ЭВМ и, следовательно, по существу их следует отнести к АСУТП работающим в супервизорном режиме или режиме непосредственного цифрового управления.

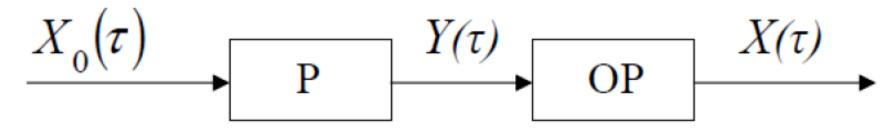
Для работы ЭВМ необходимо наличие аналитического описания объекта, т.е. его математической модели и алгоритмов адаптации и управления.


2. По характеру использования информации


- а. замкнутые системы;
- **b.** разомкнутые системы;
- с. комбинированные системы.

а. замкнутые системы;

Замкнутые системы для своей работы используют текущую рабочую информацию о выходных величинах, определяют отклонение регулируемой величины от заданного значения и принимают меры для устранения этого отклонения.


b. разомкнутые системы;

Разомкнутые системы не используют рабочую информацию о регулируемых величинах т.к. отсутствует обратная связь. Работа таких систем основана на информации о входных величинах.

Разомкнутые системы делятся на:

- 1) системы с жесткой программой.
- 2) системы с регулированием или управлением по возмущению.

Примером системы с жесткой программой служит система автоматического пуска и останова комплекса механизмов, в котором должна выдерживаться определенная последовательность работы отдельных механизмов.

- **b.** разомкнутые системы;
- 2) системы с регулированием или управлением по возмущению.

Разомкнутые системы с регулированием по возмущению используют информацию о входных величинах — возмущениях и принимают меры, чтобы указанные возмущения не оказывали влияние на выходную величину, т.е. как бы компенсируют их. Поэтому их называются инвариантными или системами с компенсацией возмущений. Рассмотрим структуру разомкнутой системы автоматического регулирования температуры в печи, по своим задачам аналогичную замкнутой САР, рассмотренной выше.

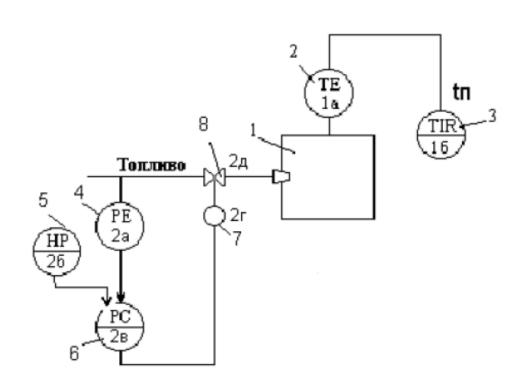
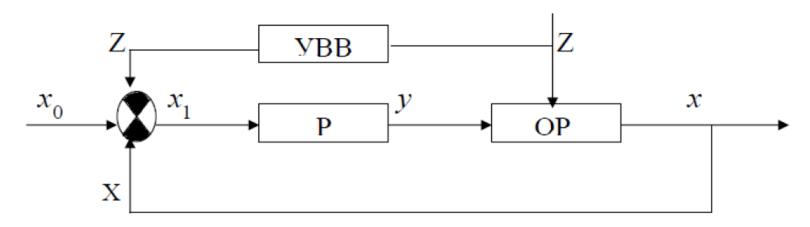
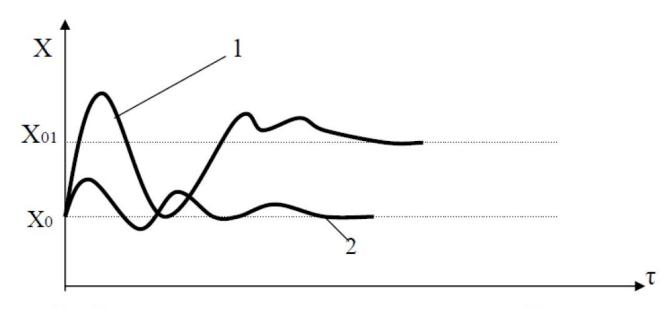
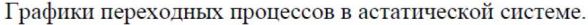



Схема функциональной структуры разомкнутой САР температуры в печи с регулированием по возмущению.

с. комбинированные системы.

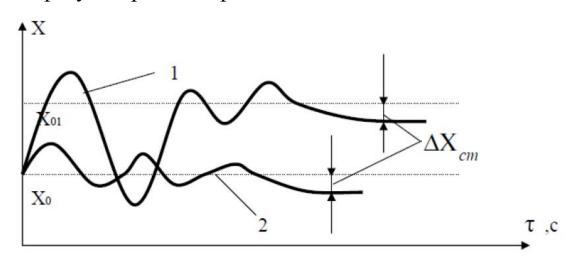

Структурная схема комбинированной САР: $X_1 = X_0 - (X + Z)$



3. По результатам работы в установившемся состоянии

а. астатические системы;

В астатических системах регулируемая величина после окончания переходного процесса точно равна заданному значению. Практически она может отличаться на некоторую малую величину, обусловленную нечувствительностью системы.



b. статические системы.

В статической системе после окончания переходного процесса возникает разность между заданным и установившимся значениями регулируемой величины. Эта разность называется статической ошибкой. Она зависит от величины возмущения, в том числе задания и от параметров настройки регуляторов, но принципиально неизбежна в статических системах.

Графики переходных процессов в статической системе:

1 - переходный процесс в статической системе при изменении заданного значения регулируемой величины с X_0 до X_{01} ;

2 – при прочих возмущениях и сохранении заданного значения X₀

4. По числу регулируемых величин

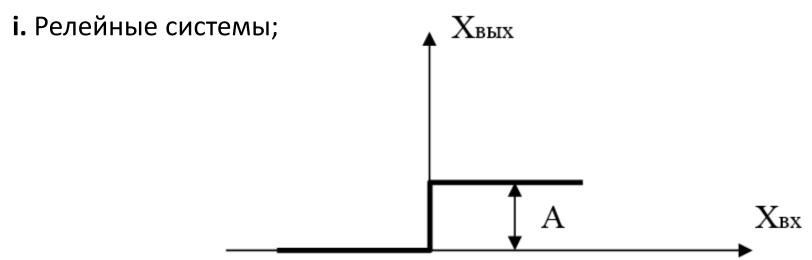
а. одномерные;

К одномерным системам относятся простейшие системы с одной регулируемой величиной, например в электрической нагревательной печи с неконтролируемой системой имеется одна регулируемая величина — температура.

b. многомерные.

Вместе с тем **многомерные системы** характеризуются наличием связей между регулируемыми величинами, такие системы называются многосвязными. Связи между регулируемыми величинами могут быть двух родов:

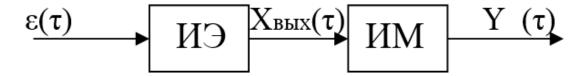
- 1) Внутренние обусловленные физическими свойствами объектов (если, например, в печи регулируется температура свода, содержания кислорода в продуктах сгорания и давление в рабочем пространстве, то изменение расхода топлива, предназначенного для управления температурой свода, будет оказывать влияние и на содержание кислорода в продуктах сгорания и на давление в рабочем пространстве).
- 2) Внешние связи т.е. накладываемые на систему по условиям ее функционирования или на основе требований технологического процесса, например, при автоматическом составлении шихты агломерационного процесса, задание регулятором количества отдельных компонентов устанавливается в зависимости от потребного суммарного количества шихты.



5. По характеру изменения регулирующих воздействий во времени

- а. непрерывные системы;
- В непрерывных системах информация об их работе и регулирующие воздействия являются непрерывными функциями времени, т.е. в каждом элементе системы при наличии непрерывного изменения входной величины также непрерывными являются и выходные величины.
- **b.** дискретные системы.
- В дискретных системах информация и регулирующие воздействия появляются только в определенные моменты времени.
 - і. Релейные системы;
 - іі. Импульсные системы;
 - ііі. Цифровые системы.

b. дискретные системы.



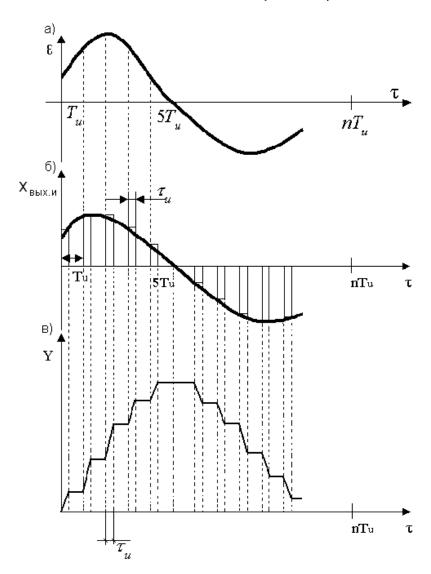
В релейной системе выходная величина Хвых изменяется скачкообразно на величину А при определенном значении входной величины Хвх. В релейных системах происходит квантование выходной величины Хвых по уровню.

b. дискретные системы.

іі. Импульсные системы;

Структурная схема импульсного регулятора

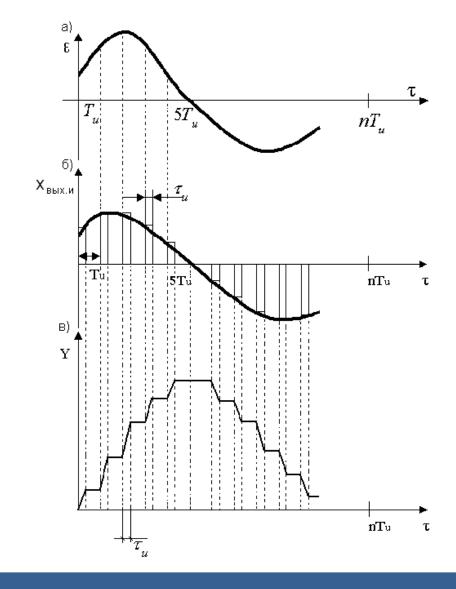
Регулятор состоит из импульсного элемента (ИЭ) и исполнительного (ИM), формирующего управляющие воздействия $Y(\tau)$, механизма Ha определённые моменты времени. выходе импульсного элемента формируются импульсы $X_{\text{вых}}(\tau)$, параметры которых зависят от входной величины $\epsilon(\tau)$, причем импульсные элементы могут осуществлять амплитудную и широтную модуляцию.



b. дискретные системы.

іі. Импульсные системы;

Графики:


- а) изменения во времени отклонения регулируемой величины от заданного значения $\varepsilon(\tau)$;
- б) формирования во времени импульсов $X_{вых.и}$ (τ);
- в) работы исполнительного механизма импульсного регулятора, осуществляющего амплитудную модуляцию Y (τ).

b. дискретные системы.

іі. Импульсные системы;

График работы ИМ показывает, что механизм включается при поступлении на него импульса и работает в течение импульса времени $\tau_{\rm u}$ после чего останавливается. Скорость выходного вала исполнительного механизма пропорциональна высоте импульса т.е. входной величине $\varepsilon(\tau)$ в момент начала импульса.

РАЗНОВИДНОСТИ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ (CAP) И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ (CAY)

b. дискретные системы.

ііі. Цифровые системы.

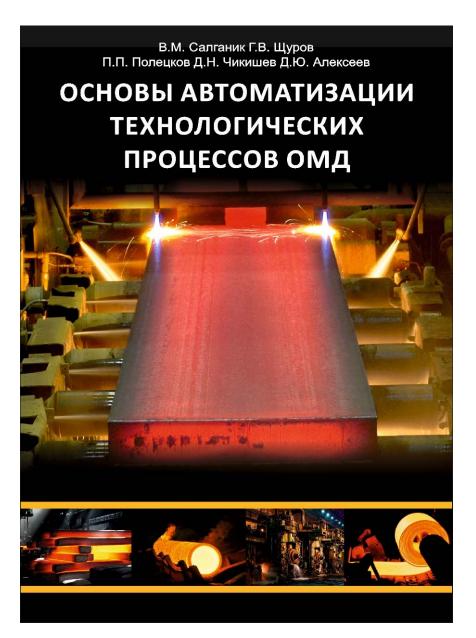
К дискретным системам относятся и <u>цифровые системы</u>, использующие в своем составе различные цифровые устройства: ЭВМ, цифровые измерительные приборы, микропроцессорные регуляторы.

В цифровых системах осуществляется квантование величин и по уровню и по времени, т.е. они являются релейно-импульсными. Цифровые системы обладают высоким быстродействием, имеют малый интервал квантования по времени и по результатам своей работы близки к непрерывным системам.

РАЗНОВИДНОСТИ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ (CAP) И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ (CAY)

6. По виду энергии применяемой для работы

а. прямого действия;


В системах прямого действия для перемещения регулирующего органа применяется внутренняя энергия системы, например, энергия чувствительного элемента.

b. косвенного действия.

В системах косвенного действия для работы используется внешняя энергия. В зависимости от вида используемой внешней энергии, системы косвенного действия делятся на:

- 1) электрические;
- 2) пневматические;
- 3) гидравлические;
- 4) комбинированные.

Самостоятельное изучение:

РАЗДЕЛ 5

- 5 ПРИБОРЫ ТЕХНОЛОГИЧЕСКОГО КОНТРОЛЯ ПРОЦЕССОВ И КАЧЕСТВА ПРОДУКЦИИ
- 5.1 Измерение энергосиловых параметров
- 5.2 Измерение геометрических размеров проката
- 5.3 Измерение температуры

- стадия управления;
- вид объекта управления;
- период управления;
- характер задачи управления;
- вид управляемых показателей.

В зависимости от стадии управления функции АСУ ТП подразделяют на информационные и управляющие. К информационным функциям относят сбор информации о состоянии стана и представление ее в удобном для дальнейшего использования виде. К управляющим функциям относят выработку и реализацию управляющих воздействий на основании информации о состоянии стана.

По виду объекта управления функциональные задачи АСУ ТП прокатного стана подразделяются на задачи управления:

- прокатным станом в целом;
- <u>зонами (участками) стана</u> и агрегатами технологической линии;
- <u>отдельными устройствами и системами</u> стана и агрегатов.

- стадия управления;
- вид объекта управления;
- период управления;
- характер задачи управления;
- вид управляемых показателей.

В зависимости от количества полос, прокатываемых за период управления, целесообразно различать задачи управления станом при прокатке:

- последовательности партий полос;
- отдельных партий полос;
- отдельных полос;
- при осуществлении отдельных проходов.

- стадия управления;
- вид объекта управления;
- период управления;
- характер задачи управления;
- вид управляемых показателей.

По характеру функциональные задачи АСУ ТП можно подразделить на:

- задачи подготовки стана к прокатке;
- задачи непосредственного управления прокаткой.

- стадия управления;
- вид объекта управления;
- период управления;
- характер задачи управления;
- вид управляемых показателей.

Управляемые показатели процесса прокатки на стане можно подразделить на:

- переменные устройств стана, характеризующие работу приводов, устройств и систем стана;
- технологические переменные стана, непосредственно характеризующие процесс прокатки.

Следовательно - <u>по виду управляемых показателей функциональные задачи АСУ ТП прокатного стана можно подразделить на задачи управления переменными устройств</u> и *технологическими переменными стана*.

управления: Управляемые переменные прокатного стана Переменные устройств стана Технологические переменные параметры рабочих жидкостей и газов ИTA Силы и моменты прокатки прокатываемого металла механизмах и приводах Координаты и скорости и скорости прокатываемых полос емпературы рабочих расходы MOMEHTE B проката ПОЛОСЬ рабочих органов органов, узлов стана емпература еометрические **Давления** и натяжение движения Координаты Силы и

 \Box

технологическими переменными стана

подразделить

на системь

свою очередь, системы управления

прокатные станы как объекты автоматизированного управления Характерные функциональные задачи АСУ ТП прокатного стана

СТРУКТУРА АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМ ПРОЦЕССОМ СОВРЕМЕННОГО ПРОКАТНОГО СТАНА

Требования к технологическому процессу

Включают допустимые пределы изменения показателей качества исходной заготовки, а также энергоносителей и других материалов, используемых в процессе прокатки.

Требованиями к технологическому оборудованию

Являются достаточная мощность, быстродействие и надежность, а также возможность установки, эксплуатации и обслуживания технических средств автоматизации.

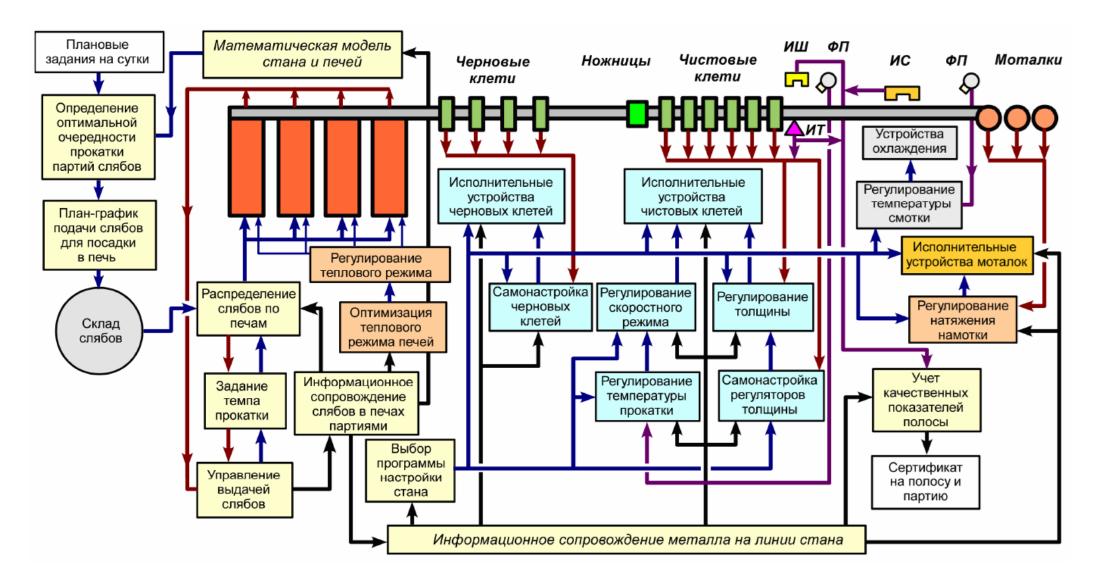
ОСОБЕННОСТИ АСУТП СОВРЕМЕННОГО ПРОКАТНОГО СТАНА

В соответствии с ГОСТ 24.103-84 <u>АСУТП</u> прокатного стана должна функционировать в следующих режимах:

ИНФОРМАЦИОННО-СОВЕТУЮЩЕМ РЕЖИМЕ, при котором средства вычислительной техники вырабатывают и выдают оперативному персоналу рекомендации по рациональному управлению процессом;

КОМБИНИРОВАННОМ РЕЖИМЕ, при котором средства вычислительной техники автоматически изменяют уставки и параметры настройки локальных систем регулирования;

РЕЖИМЕ ПРЯМОГО УПРАВЛЕНИЯ, при котором средства вычислительной техники обеспечивают непосредственное управление исполнительными устройствами.

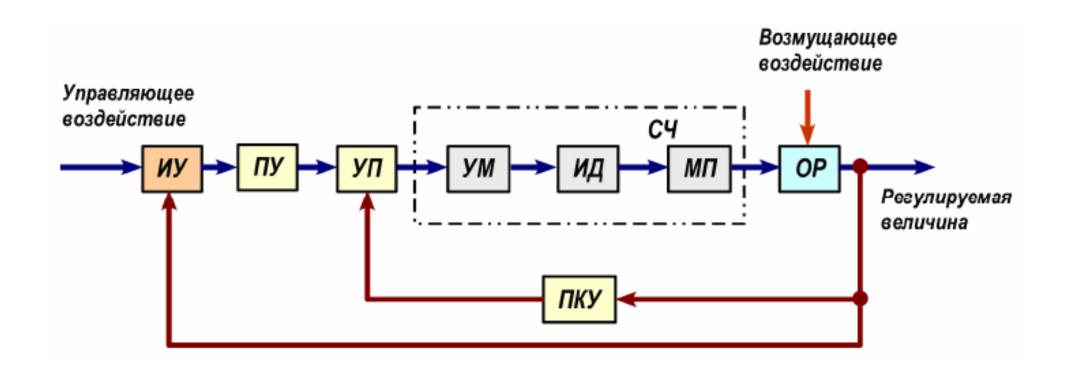

ПРИМЕРЫ РАБОТЫ СИСТЕМ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМ ПРОЦЕССОМ

Пример информационной системы управления

ФГБОУ ВО «Магнитогорский Государственный Технический Университет им. Г.И. Носова»

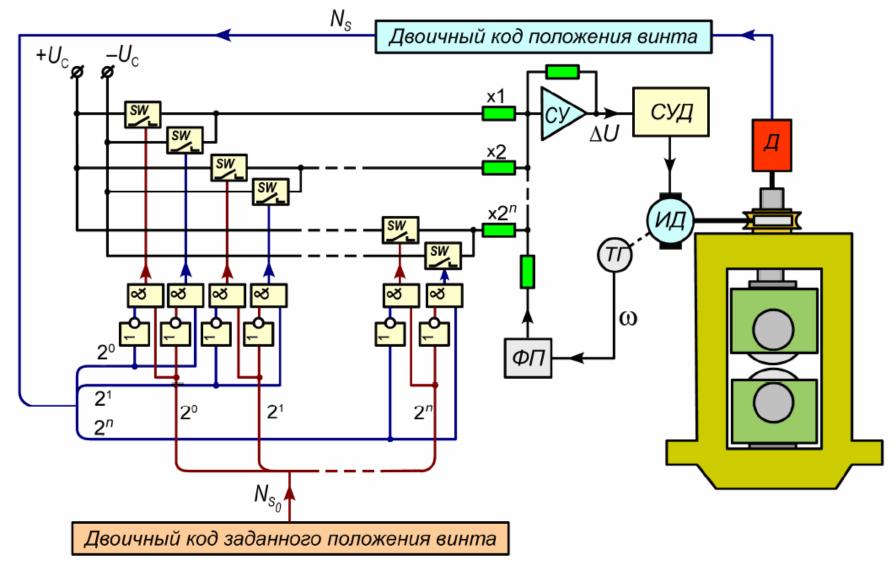
Информационно-управляющая система непрерывного широкополосного стана горячей прокатки

Пример локальной системы управления

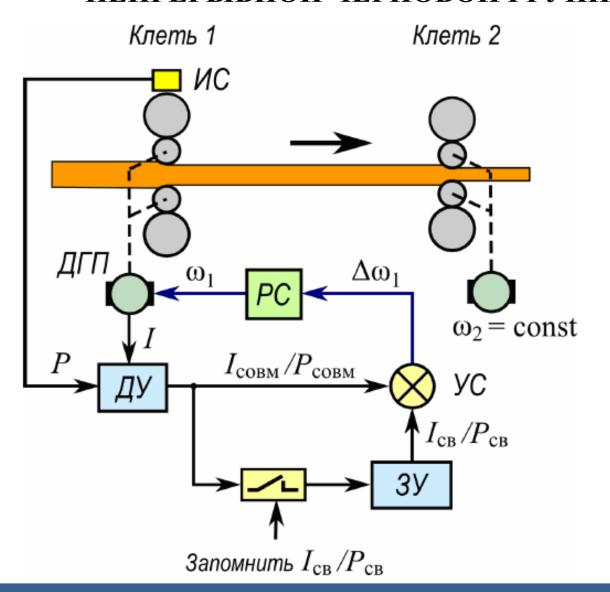

Система позиционного управления

Такие системы обеспечивают автоматическое управление: подъемными столами, сталкивателями, приемниками слябов, направляющими линейками, нажимными устройствами горизонтальных и вертикальных валков клетей, механизмами установки раствора тянущих и формирующих роликов моталок и кареток измерителей ширины.

Основа этих систем - **СЛЕДЯЩИЙ ПРИВОД**, который представляет собой замкнутую активную динамическую систему, управляющую перемещением объекта регулирования. При этом регулируемая величина с той или иной степенью точности воспроизводит перемещение, заданное управляющим воздействием.



СЛЕДЯЩИЙ ПРИВОД

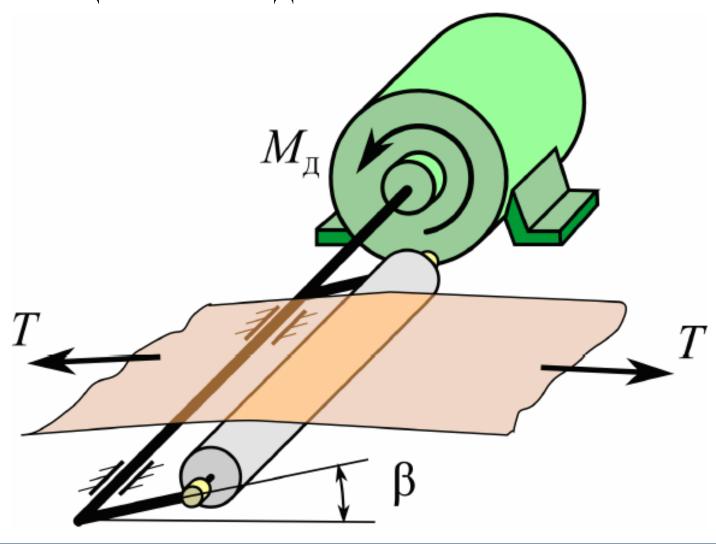


СИСТЕМА ПОЗИЦИОННОГО УПРАВЛЕНИЯ НАЖИМНЫМИ УСТРОЙСТВАМИ РАБОЧЕЙ КЛЕТИ В ЦИФРО-АНАЛОГОВОМ ИСПОЛНЕНИИ

БЛОК-СХЕМА СИСТЕМЫ РЕГУЛИРОВАНИЯ НАТЯЖЕНИЯ В НЕПРЕРЫВНОЙ ЧЕРНОВОЙ ГРУППЕ КЛЕТЕЙ

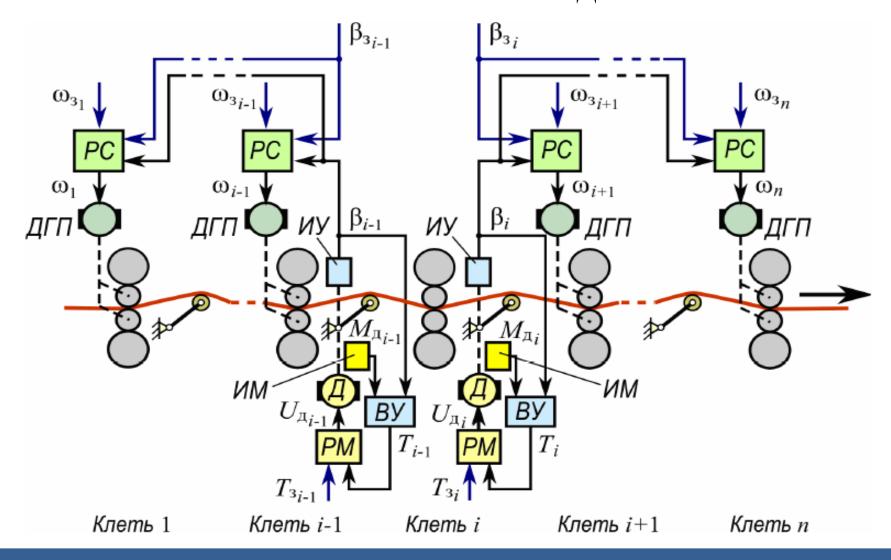
$$\left| \frac{I_{\text{CB}}}{P_{\text{CB}}} - \frac{I_{\text{COBM}}}{P_{\text{COBM}}} \right| \approx 0$$

СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ НАТЯЖЕНИЯ В ЧИСТОВОЙ ГРУППЕ КЛЕТЕЙ

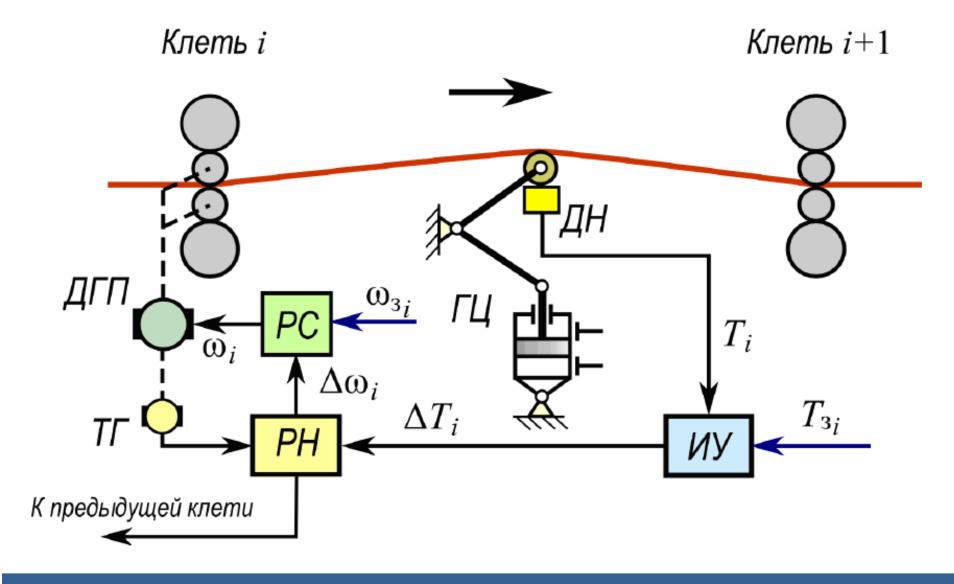

Ширина полосы формируется в основном в черновой группе клетей и затем стабилизируется в чистовой группе за счет функционирования системы автоматического регулирования натяжения (CAPH).

САРН широкополосных станов горячей прокатки выполняются на базе:

- Гидравлических или пневматических петледержателей, в конструкции которых заложен принцип независимости усилий в определенном интервале угла поворота рычага-петледержателя при неизменном давлении рабочего тела в цилиндрах;
- Статических петледержателей, в которых натяжение измеряется специальными датчиками, вмонтированными в опору ролика петледержателя;
- Электромеханических петледержателей с безредукторным приводом от специальных бесколлекторных двигателей или двигателей постоянного тока с независимым возбуждением.



ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПЕТЛЕДЕРЖАТЕЛЬ С БЕЗРЕДУКТОРНЫМ ПРИВОДОМ ОТ СПЕЦИАЛЬНОГО ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА



СИСТЕМА РЕГУЛИРОВАНИЯ НАТЯЖЕНИЯ В ЧИСТОВОЙ ГРУППЕ НЕПРЕРЫВНОГО ШИРОКОПОЛОСНОГО СТАНА С ЭЛЕКТРОМЕХАНИЧЕСКИМИ ПЕТЛЕДЕРЖАТЕЛЯМИ

СТРУКТУРНАЯ СХЕМА СИСТЕМЫ СТАБИЛИЗАЦИИ НАТЯЖЕНИЯ СО СТАТИЧЕСКИМ ПЕТЛЕДЕРЖАТЕЛЕМ И ДАТЧИКОМ НАТЯЖЕНИЯ

СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ТОЛЩИНЫ (САРТ) ПОЛОСЫ В ЧИСТОВОЙ ГРУППЕ КЛЕТЕЙ

САРТ на основе метода Головина-Симса

$$h_1 = S_0 + \frac{P}{C_{\rm K}},$$

где h_1 — толщина прокатываемой полосы;

 S_0 – раствор ненагруженных валков (при отсутствии металла в клети);

Р – сила прокатки (вертикальная составляющая силы давления металла на валки);

 $C_{\rm K}$ — коэффициент жесткости клети в направлении силы прокатки.

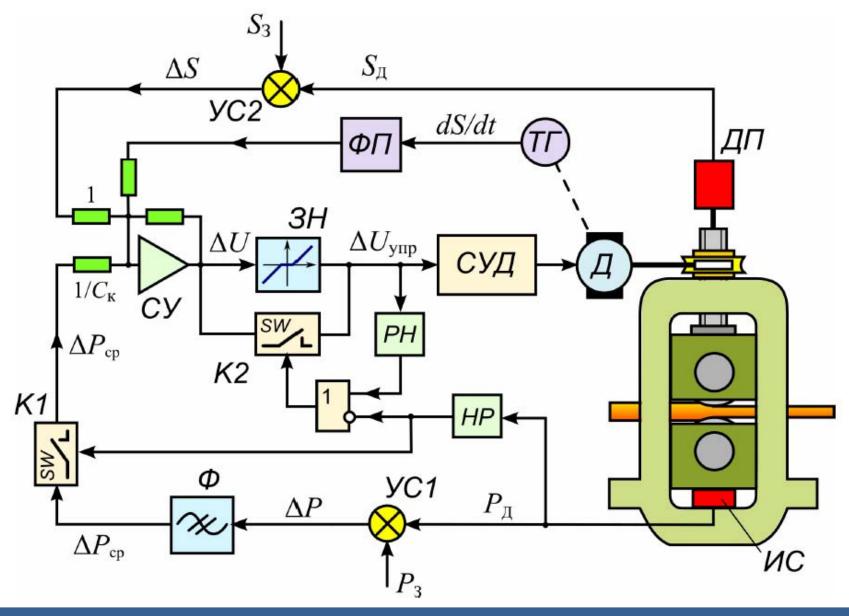
САРТ на основе метода Головина-Симса

$$\Delta S = \Delta P/C_{\rm K} ,$$

где ΔS — изменение раствора валков, необходимое для обеспечения заданной толщины полосы h_1 при изменении силы прокатки на величину ΔP .

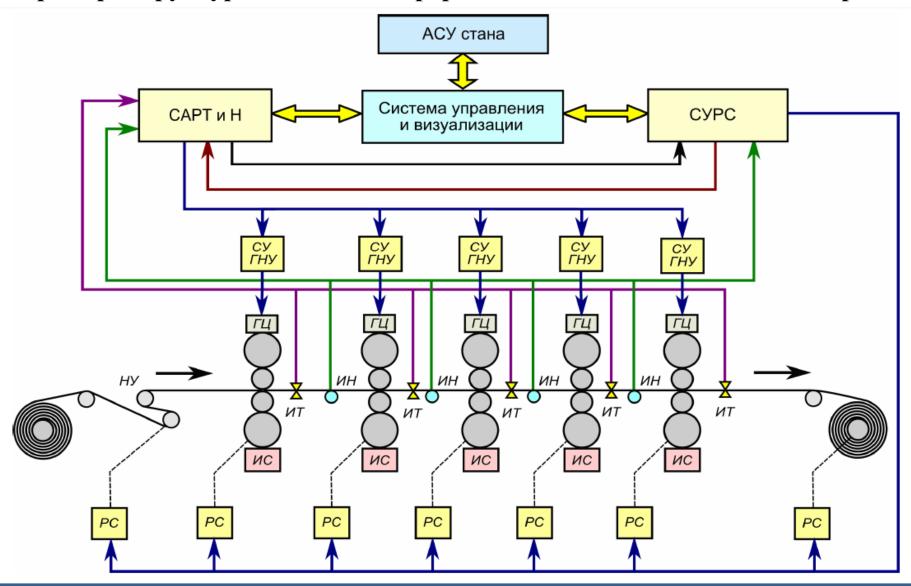
Таким образом, при увеличении силы прокатки относительно некоторого номинального значения на ΔP , система регулирования должна уменьшить раствор валков на величину ΔS и наоборот. Очевидно, что изменение раствора валков повлечет за собой изменение силы прокатки. Процесс стабилизируется при изменении силы прокатки на величину

$$\Delta P_0 = \delta h (C_{\Pi} + C_{\kappa}),$$

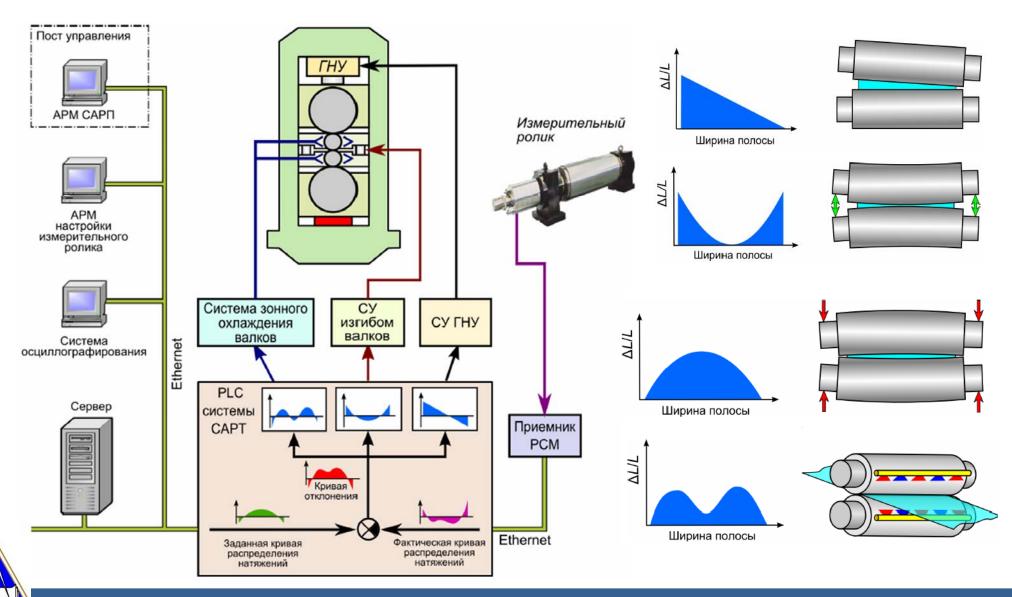

где δh – величина скомпенсированной продольной разнотолщинности при идеально работающем регуляторе толщины;

 $C_{\rm II}$ — коэффициент жесткости прокатываемой полосы, $C_{\rm II} = -dP/dh_1$;

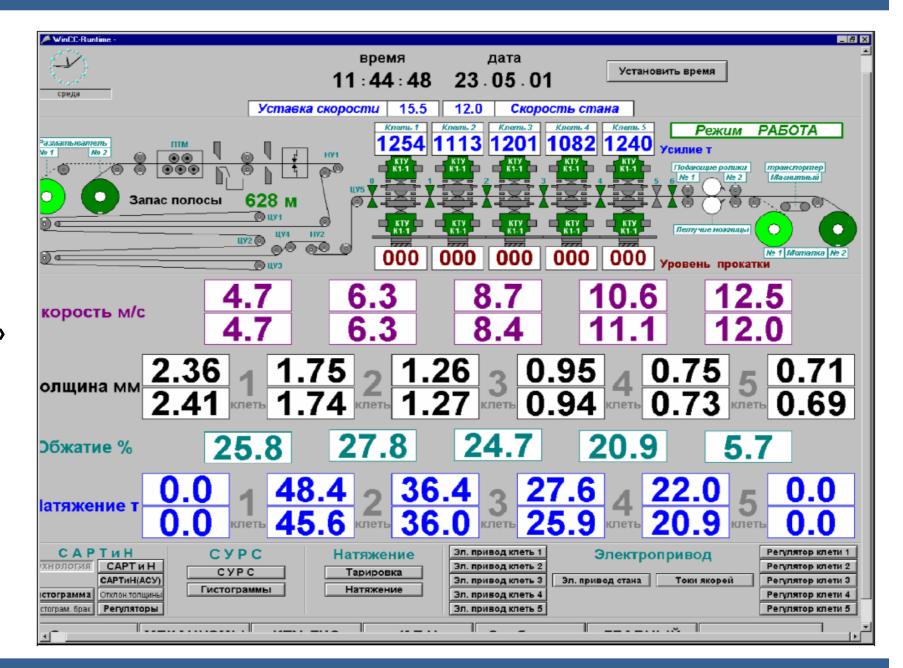
 ΔP_0 – изменение силы прокатки при полной компенсации разнотолщинности.


САРТ на основе метода Головина-Симса

РЕГУЛИРОВАНИЕ ТОЛЩИНЫ И НАТЯЖЕНИЯ


На примере структуры АСУ ТП непрерывного стана «1700» холодной прокатки

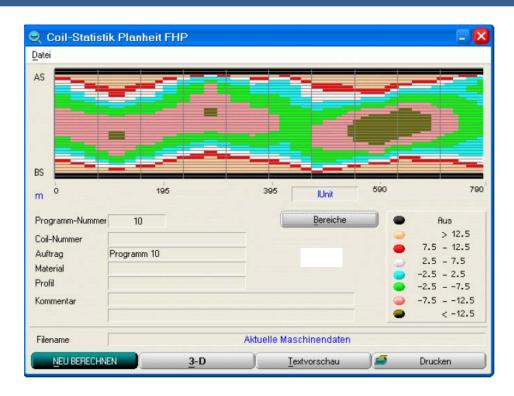
АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ ПЛОСКОСТНОСТИ НА ПРИМЕРЕ СТАНА 1700


СТРУКТУРНАЯ СХЕМА СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ПЛОСКОСТНОСТИ ПОЛОСЫ 5-Й КЛЕТИ СТАНА «1700»

Ролик для измерения распределения натяжения по ширине полосы

APM CTAHA «1700»

ФГБОУ ВО «Магнитогорский Государственный Технический Университет им. Г.И. Носова»

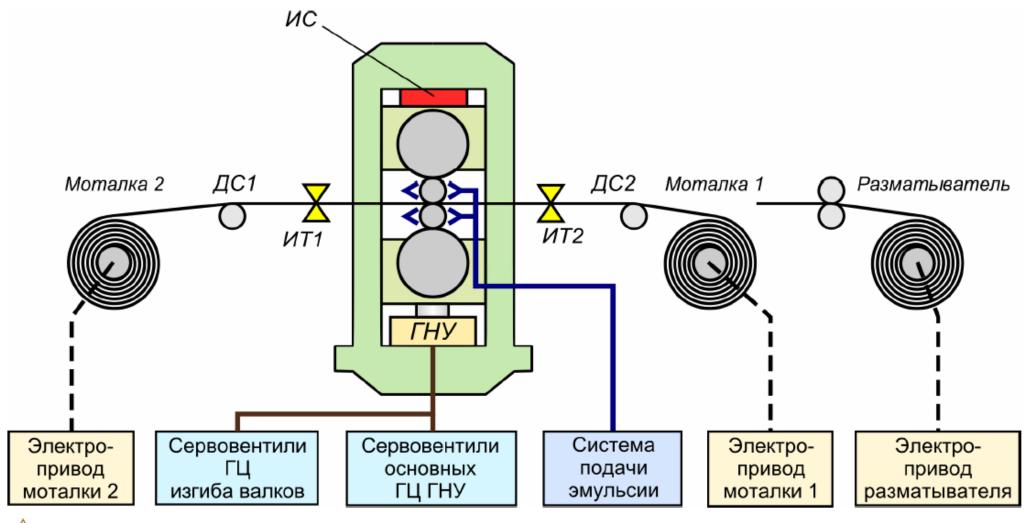


Элементы ПО СТАНА «1700»

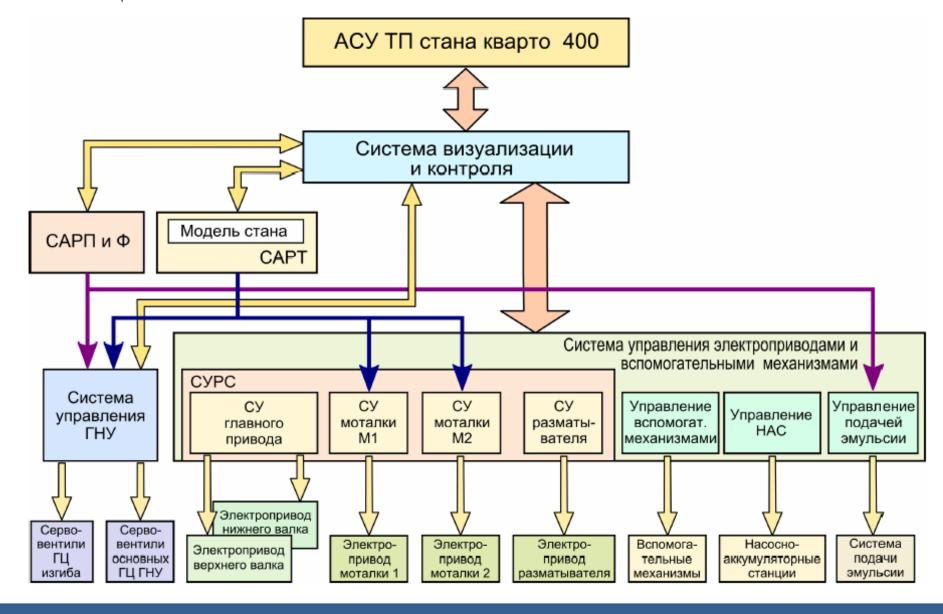
ВИЗУАЛИЗАЦИЯ ГЕОМЕТРИИ ПОЛОСЫ



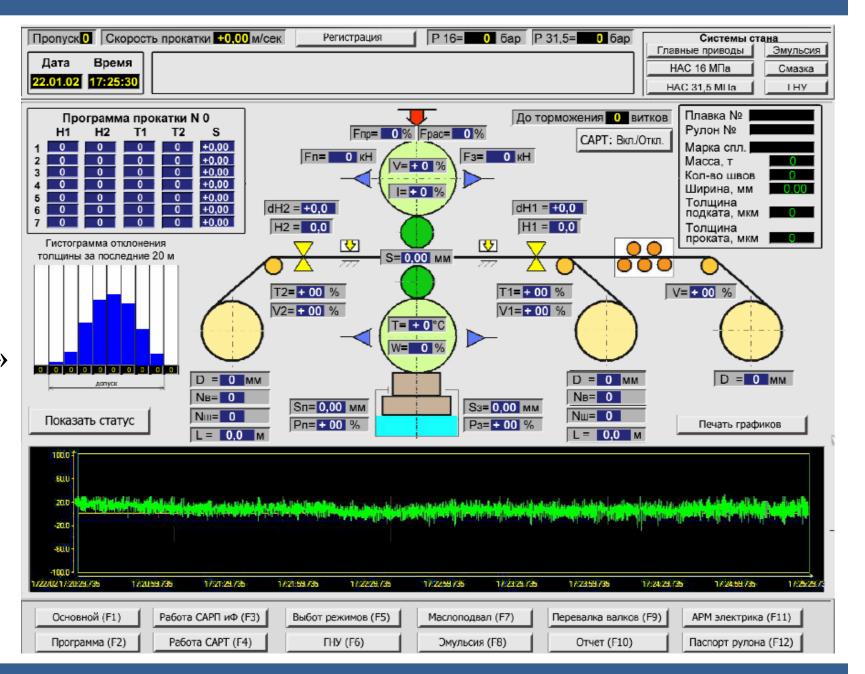
ФГБОУ ВО «Магнитогорский Государственный Технический Университет им. Г.И. Носова»


Элементы ПО СТАНА «1700»

ВИЗУАЛИЗАЦИЯ ГЕОМЕТРИИ ПОЛОСЫ

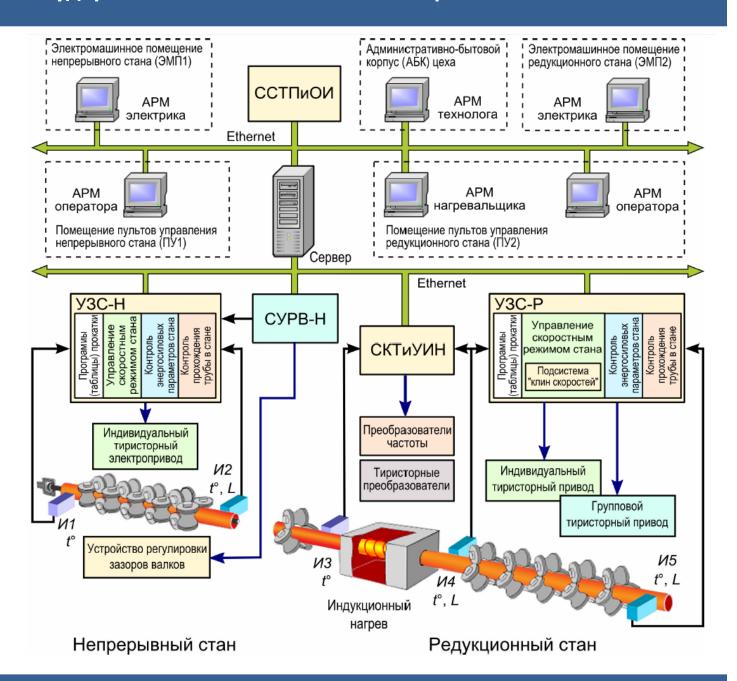


АСУ ТП СТАНА КВАРТО 400



ФУНКЦИОНАЛЬНАЯ СХЕМА АСУ ТП СТАНА «КВАРТО 400»

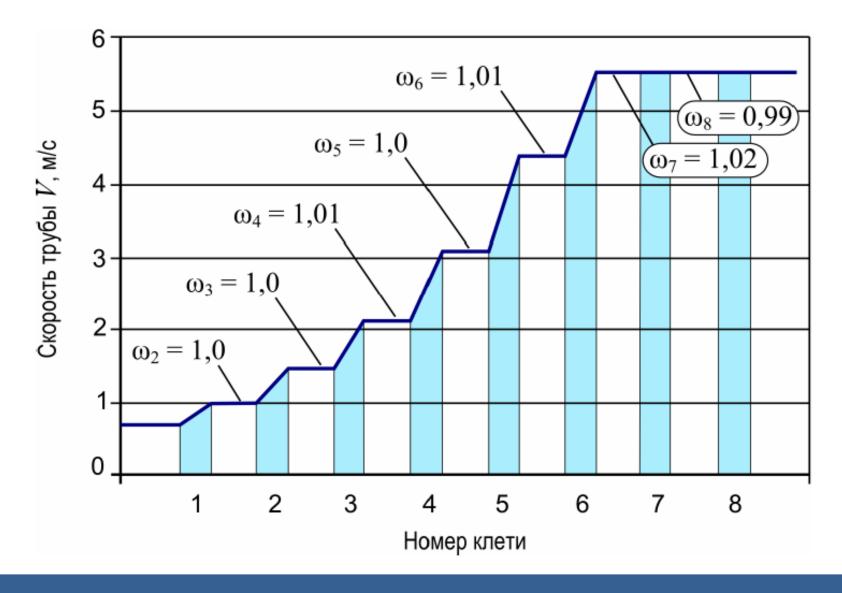
ФГБОУ ВО «Магнитогорский Государственный Технический Университет им. Г.И. Носова»



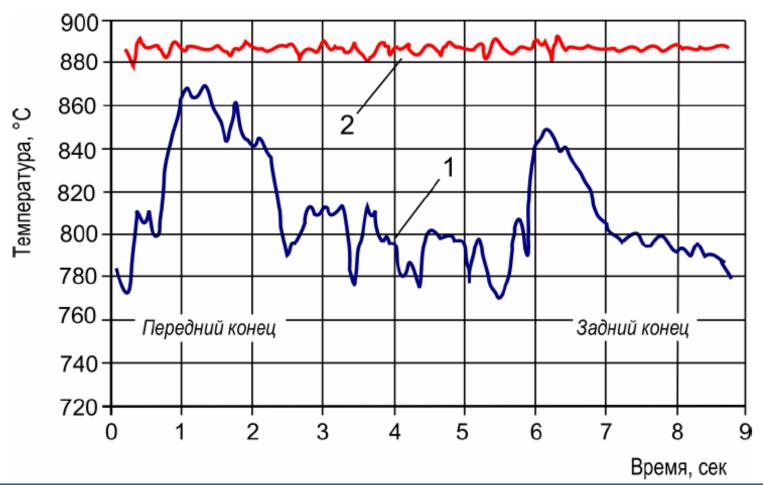
APM CTAHA «KBAPTO 400»


ФГБОУ ВО «Магнитогорский Государственный Технический Университет им. Г.И. Носова»

АСУ ТП Уровня
3 (SCADA)
«Диспетчерское
управление»
технологии прокатки
бесшовных труб



Распределение относительного обжатия стенки трубы


изменение скорости движения трубы

Результаты измерения температуры черновой трубы диаметром 92 мм с толщиной стенки 3,2 мм при ее движении через индукционную проходную печь (ИПП) со скоростью 2,5 м/с:

1 – на входе в шестой блок ИПП; 2 – на выходе из ИПП

Курс Лекций

Версия «январь 2019»

Левандовский С.А. ©

