8

ОТОБРАЖЕНИЕ ВЗАИМОСВЯЗИ МЕЖДУ ПАРАМЕТРАМИ С ПРИМЕНЕНИЕМ МНОЖЕСТВЕННОГО РЕГРЕССИОННОГО АНАЛИЗА

Множественный регрессионный анализ — это метод математической статистики, который позволяет найти наиболее точное и достоверное отображение (модель, аппроксимацию, уравнение регрессии) стохастической зависимости между откликом Y и несколькими факторами $X_1, X_2, \ldots, X_i, \ldots, X_m$. Для решения данной задачи необходимо:

- 1. Определить вид уравнения регрессии.
- 2. Оценить значимость коэффициентов регрессии.
- 3. Оценить допустимость отображения исследуемой зависимости выбранным уравнением регрессии.
- 4. Исследовать остатки (отклонения действительных значений отклика от предсказываемых по уравнению регрессии).

8.1. Определение вида уравнения множественной регрессии

Учитывая возможные отклонения, модель связи отклика с некоторым комплексом факторов $\vec{X} = \left\{ X_1, ..., X_j, ..., X_m \right\}$ должна быть представлена в виде двух составляющих:

$$y = \varphi(\vec{X}) + \varepsilon, \tag{8.1}$$

- где $\phi(\vec{X})$ систематическая (объясненная) составляющая. Она обусловлена существованием зависимости между откликом и комплексом факторов;
 - случайная составляющая. Она обусловлена разнообразными возмущениями и вызывает отклонения у от значений, соответствующих реальной зависимости.

Для построения множественной регрессионной модели (иначе – множественного уравнения регрессии или просто множественной регрессии) необходимо решить следующие задачи:

Задача определения вида уравнения множественной регрессии состоит в нахождении систематической составляющей $\phi(\vec{X})$. Однако, поскольку используются выборки ограниченного объема ($n <<< \infty$), могут быть найдены лишь оценки истинных параметров.

Пусть, например, действительная зависимость отклика от комплекса факторов является линейной:

$$y = \varphi(\vec{X}) = \beta_0 + \sum_{i=1}^{m} \beta_j X_j$$
 (8.2)

Оценкой (моделью, отображением, аппроксимацией) этой связи также может быть линейное выражение:

$$\widehat{y} = \widehat{\varphi}(\vec{X}) = b_0 + \sum_{j=1}^{m} b_j X_j$$
 (8.3)

В выражении (8.3), которое и есть уравнение регрессии, коэффициенты регрессии b_0 и b_j (j=1,2,...,m) представляют собой оценки коэффициентов истинной зависимости ($b_0 \approx \beta_0$ и $b_j \approx \beta_j$).

Для подбора уравнения $\hat{y} = \hat{\varphi}(\vec{X})$, которое наилучшим образом отображает стохастическую связь между откликом и рассматриваемыми факторами, используют метод наименьших квадратов (МНК). Согласно МНК наилучшей оценкой исследуемой зависимости является та, которая дает наименьшую сумму квадратов отклонений наблюдаемых значений отклика y_i от рассчитанных по уравнению регрессии \hat{y}_i при тех же значениях факторов $\{x_{1i},...,x_{ji},...,x_{mi}\}$. Это условие выражается следующим образом:

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \min.$$
 (8.4)

Исходя из условия (8.4) задача определения коэффициентов уравнения регрессии сводится практически к определению минимума функции нескольких переменных и решена математической статистикой для линейного уравнения. Значения коэффициентов регрессии в (8.3) вычисляются решением системы из n линейных уравнений с m неизвестными (здесь n - число наблюдений).

В *MS Excel* коэффициенты линейной аппроксимации могут быть определены с использованием статистической функции ЛИНЕЙН(). Синтаксис функции и вопросы, связанные с ее использованием приведены в приложении 11. Для комплексного решения задачи множественного регрессионного анализа в *MS Excel* имеется инструмента «Регрессия».

8.2. Оценивание качества множественной аппроксимации

Для оценивания качества множественной аппроксимации необходимо определить ее статистическую надежность, проверить значимость коэффициентов регрессии и проверить выполнение допущений относительно остатков. Оценивание статистической надежности уравнения множественной регрессии выполняется так же, как и парной аппроксимации (см. подраздел 7). Поэтому здесь рассмотрим только две последние задачи.

8.2.1. Проверка значимости коэффициентов регрессии

Коэффициенты регрессии b_j являются случайными величинами с математическими ожиданиями β_j и дисперсиями, которым соответствуют стандартные отклонения S_{bj} . Значение b_j признается статистически значимым, если выполняется условие:

$$t_{bj} = \frac{\left|b_{j}\right|}{S_{bi}} > t\left[\alpha; n - k\right], \tag{8.5}$$

где t_{bj} и $t\left[\alpha;n-k\right]$ - расчетное и табличное числа Стьюдента.

Если условие (8.5) не выполнено, то следует признать, что $b_j=0$ и влияние фактора X_j на отклик несущественное. В таком случае рекомендуется повторить регрессионный анализ без учета фактора X_j .

8.2.2. Анализ остатков

Остатками принято называть отклонения действительных значений отклика от рассчитанных по уравнению регрессии (для i-го наблюдения остаток $e_i = y_i - \hat{y}$). Отклонения обусловлены наличием в (8.1) случайной составляющей ϵ , относительно которой делают следующие предположения:

- 1. Это нормально распределенная случайная переменная.
- 2. Математическое ожидание случайной составляющей равно нулю $M(\varepsilon)$ = 0 . Считают, что данная гипотеза выполняется, если среднее выборочное остатков можно считать равным нулю:

$$\overline{e} = \frac{1}{n} \sum_{i=1}^{n} e_i \approx 0. \tag{8.6}$$

- 3. Дисперсия случайной составляющей постоянна $D(\varepsilon) = Const$. Гипотеза может быть проверена, например, построением графиков остатков в зависимости от каждого фактора. Если на всех таких графиках остатки примерно равномерно рассеяны в пределах области, параллельной оси X_j , то гипотезу $D(\varepsilon) = Const$ считают справедливой.
- 4. В различных наблюдениях значения ϵ не зависят друг от друга. Для проверки гипотезы о независимости отклонений в различных наблюдениях оценивают автокорреляцию остатков с применением критерия Дарбина-Уотсона (критерия DW):

$$DW = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}.$$
 (8.7)

Строгое условие отсутствия автокорреляции DW =2. Однако, с учетом особенностей распределения критерия Дарбина-Уотсона, ориентировочно можно считать, что автокорреляция остатков отсутствует при $1.2 \le DW \le 2.8$. В противном случае следует признать, что гипотеза о независимости остатков в рассматриваемом случае не верна.

Если анализ остатков обнаруживает несоответствия указанным гипотезам, то уравнение регрессии, относительно которого данные остатки получены, следует считать неудовлетворительным, т. к. правомерность применения МНК и указанных выше оценок и для множественного регрессионного анализа может быть поставлена под сомнение. В таком случае рекомендуют рассмотреть уравнение иного вида (например, нелинейное вместо линейного), включить неучтенные ранее факторы, выделить в области варьирования факторов различные подобласти.

8.3. Пример множественного регрессионного анализа в *MSExcel* с применением инструмента «Регрессия»

В качестве примера рассмотрим задачу построения зависимости предела текучести металла, прокатанного на широкополосном стане горячей прокатки (ШСГП) от температур конца прокатки (tкп) и смотки (tсм). Исходные данные заносятся на рабочий лист с клавиатуры (на рис. 8.1 и 8.2 они расположены в ячейках A1:C29).

Σ						АВТОКОРРЕЛЯЦИЯ	OCTATKOB	2,3644	Отсутствует							за Верхние ж	40 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	523 -0,373	197 -0,593									
_						ABTOK	ŏ	ANG.	Б							*	50,000 v	1 / ZOL 6	-0,623	2 -0,797									
¥																Верхние	B(00)	800 to 0	-0,347	-0,572									
٦	СИИ	-0,695"tem	ИЕНТОВ	Значим	Значим	Эначим	имации	имация	Haa		Cmarumo	3,8E-12				Нижине	000 PG 004	200,1001	0 0 0 0	-0,818									
_	УРАВНЕНИЕ РЕГРЕССИИ	- 0,498"txn	» КозффИЦ	90	p1	P2	LANDPOKC	Аппроксимация	надежная		¥	90,4187				. P.	CHAYERUE A DT AA	# C L C C S	4,03E-07	1,47E-11									
I	уРАВНЕН	$ST = 1152,965 \cdot 0,498^{\circ}$ tkn $\cdot 0,695^{\circ}$ tem	значимость козффициентов	tl0,05;n-kj	2,0595		надежность аппроксимации	F[0,05;k-1;n-k]	3,3852		SW	31134,018	344,332				_	2000,01	-6,7941	-11,6051						c	(ereri),	93,6	04.40
9											SS	62268,036	8608,291	70876,327		SE.		t (t (t)	0,073	090'0							Остатки	7,3	0.00
L			енли	788,0	0,879	698'0	18,56	28			7,0	2	52	27			durenmar 4.450 oos	0.00,000	ó 88	-0,695						ехорефу	33##0e 0m 067a	371.3	0 0 0 0
D E	вывод итогов		Редрессионная смамисмика	Множественный В	В-квадрат	Нормированный В-квадрат	Стандартная ошибка	Наблюдения		Дисперсионный анализ		Регрессия	Остаток	Итого				1.100000000000	tkn,C	tom,C				вывод остатка			Наблюдение	_	c
	HHBIE	tom,C	989	584	611	639	657	715	728	580	584	611	639	657	715	ç F	077	000	584 4	611	638	657	716	728	280		594	611	000
a	BIE DA	tkn,C	788	788	788	788	788	788	788	834	834 4	834	834	834	834	9	† 4 9 6	0 10	879	875	875	875	875	875	917		0 14	917	FFC
∢	исходные данные	St, MNa tkn,C tow,C	364,0	341,2	338,4	284,1	330,9	281,9	265,9	336,4	320,5	336,8	299,4	269,3	240,3	0	2,002	y 0	280,3	318,5	283,2	281,0	233,1	200,0	304,4		207.6	268,8	5 HCC
	-	N	ო	4	ю	Θ	۲	00	o	10		12	5	4	5	9	9 ţ	<u>-</u>	<u>6</u>	19	20	5	22	23	54		ф 6	38	5

Рис. 8.1. Фрагмент рабочего листа с результатами множественного регрессионного анализа инструментом «РЕГРЕССИЯ»

8.3.1. Аппроксимация с применением инструмента «Регрессия»

При выполнении работы настройки инструмента «Регрессия» должны соответствовать указанным в приложении 10.

В этом случае основные результаты (ячейки E1:M19 на рис. 8.1) будут дополнены таблицей остатков (ячейки E23:G23 на рис. 8.2).

	Α	В	С	D	E	F	G	Н
22	233,1	875	715	Т				
23	200,0	875	728		ВЫВОД ОСТАТКА			
24	304,4	917	560					
				Т		Предска		
					Наблюдение	занное	Осматки	(ei-ei-r) ²
25	307,5	917	584			Sm., M/7a		(5. 5)
26	268,8	917	611	Т	1	371,3	-7,3	53,6
27	225,4	917	639	Т	2	354,6	-13,4	37,48
28	270,3	917	657	Т	3	335,9	2,5	254,80
29	181,3	917	715	Т	4	316,4	-32,3	1214,00
30	175,3	917	728	Т	5	303,9	27,0	3517,48
31				Т	6	263,6	18,3	75,61
32				Т	7	254,6	11,3	48,53
33					8	348,4	-12,0	545,15
34				Т	9	331,8	-11,3	0,60
35				Т	10	313,0	23,8	1229,38
36				Т	11	293,5	5,9	321,94
37					12	281,0	-11,7	309,47
38				Т	13	240,7	-0,4	127,80
39				Т	14	231,7	-25,4	623,31
40					15	328,0	6,2	996,21
41					16	311,3	-21,0	741,05
42				Т	17	292,6	25,9	2205,48
43				Т	18	273,1	10,1	250,99
44					19	260,6	20,4	106,26
45				Т	20	220,3	12,8	57,69
48				Т	21	211,3	-11,3	579,18
47				Т	22	307,1	-2,7	73,28
48					23	290,4	17,1	391,16
49					24	271,7	-2,9	397,50
50					25	252,2	-26,8	573,25
51					26	239,7	30,6	3295,72
52					27	199,4	-18,1	2371,23
53					28	190,4	-15,1	9,20
54								

Рис. 8.2. Таблица остатков, полученная с использованием инструмента «РЕГРЕССИЯ»

Таблицу остатков необходимо дополнить столбцом, во всех строках которого, начиная со второй, вычислить значения $(e_i-e_{i-1})^2$. Эти данные будут в дальнейшем использованы для расчета критерия DW. Например, в ячейке H27:

 $=(G27-G26)^2$.

На основании результатов работы инструмента записать уравнение регрессии в содержательной форме, оценить значимость коэффициентов регрессии, надежность аппроксимации и автокорреляцию остатков.

Уравнение регрессии в содержательной форме (ячейки H1:J2) записывается с клавиатуры.

Оценивание значимости коэффициентов регрессии (ячейки H3:J6). В ячейке H5 определяется табличное число Стьюдента. Для рассматриваемого примера (число коэффициентов регрессии k=3):

=СТЬЮДРАСПОБР(0,05;F8-3).

В ячейках J4:J6, с использованием функции ЕСЛИ() программируется вывод о значимости коэффициентов регрессии. Например, для ячейки I4:

=ECЛИ(ABS(H17)>\$H\$5;"Значим";"He значим").

Внимание! Если коэффициент регрессии при факторе Xj оказался не значимым, необходимо повторить регрессионный анализ, не включая во входной интервал X столбец со значениями Xj. Поскольку входной интервал X должен состоять из смежных столбцов, может оказаться необходимым перегруппировать столбцы со значениями факторов.

Оценивание надежности аппроксимации в примере на рис. 8.1 выполняется в ячейках H7:J9. В ячейке H9, с помощью статистической функции FPACПОБР(), определяется табличное значение числа Фишера:

=FPAC Π O β P(0,05;2;F8-3).

Слово «Аппроксимация» в ячейки I8:J8 введено с клавиатуры. Собственно вывод («надежная» или «не надежная») формируется в ячейке I9 с применением функции ЕСЛИ() путем сравнения табличного (из ячейки H9) и рассчитанного (из ячейки I12) чисел Фишера:

=ЕСЛИ(Н9>I12;"надежная";"не надежная").

Оценивание автокорреляции остатков выполнено в ячейках L7:M9. Значение критерия Дарбина-Уотсона в ячейке M8 вычисляется по формуле, которая для рассматриваемого примера программируется следующим образом:

=CYMM(H27:H53)/G13.

Вывод в ячейке L9 формируется с применением функции ЕСЛИ(), которая проверяет условие $1,2 \le DW \le 2,8$:

ЕСЛИ(M8<1,2;"Существует";ЕСЛИ(M8>2,8;"Существует";"Отсутствует")).

Пример множественного регрессионного анализа в программе Statistica приведен в приложении 12.

8.3.2. Анализ результатов множественного регрессионного анализа

Анализируя результаты множественного регрессионного анализа необходимо ответить на следующие вопросы:

- 1. Связь между какими величинами анализировалась?
- 2. Значимы ли коэффициенты регрессии?

- 3. Как выглядит уравнение множественной регрессии, полученное в результате выполнения работы?
- 4. Можно ли считать полученное уравнение множественной регрессии статистически надежной аппроксимацией анализируемой зависимости?

Применительно к рассмотренному примеру можно сказать следующее. Анализировалась связь между пределом текучести металла $\sigma_{\scriptscriptstyle T}$, температурой конца прокатки $t_{\scriptscriptstyle K\Pi}$ и смотки $t_{\scriptscriptstyle CM}$ на ШСГП.

С доверительной вероятностью p=95% коэффициенты регрессии $b(t_{\kappa \Pi})$ =-0,498 и $b(t_{cm})$ =-0,695 являются статистически значимыми, т. к. соответствующие числа Стьюдента $|t(t_{\kappa \Pi})|$ =6,7941 и $|t(t_{cm})|$ =11,6051 больше табличного t[0,05;25]=2,0595.

Для рассмотренных условий множественная линейная аппроксимация зависимости предела текучести металла от температуры конца прокатки и смотки на ШСГП имеет вид:

$$\sigma_{o} = 1152,695 - 0,498t_{ei} - 0,695t_{ii}$$
.

С доверительной вероятностью 95% полученное уравнение регрессии можно считать статистически надежной аппроксимацией исследуемой зависимости, т. к. рассчитанное число Фишера F_p =90,4187 больше табличного F[0.05;2:25]=3,3352.

8.4. Пример нелинейного множественного регрессионного анализа в MS Excel

В качестве примера рассмотрим задачу построения аппроксимации зависимости напряжения текучести при горячей пластической деформации от термомеханических параметров процесса. Массив исходных данных записан на рабочем листе (рис. 8.3) в ячейках ВЗ:ЕЗ2. Напряжение текучести σ_s является откликом (Y), а термомеханические параметры степень ε , скорость u и температура t деформации – факторами X_1 , X_2 и X_3 соответственно.

Зависимость напряжения текучести от термомеханических параметров часто отображают степенной зависимостью:

$$\sigma_s = b_0 \varepsilon^{b_1} u^{b_2} \left(t / 1000 \right)^{b_3}. \tag{8.6}$$

Для построения нелинейных аппроксимаций поступают следующим образом. Сначала уравнение переводят в линейную форму. Линеаризацию зависимости (8.6) осуществляют логарифмированием:

$$ln(\sigma_s) = ln(b_0) + b_1 ln(\varepsilon) + b_2 ln(u) + b_3 ln(t/1000).$$
 (8.7)

Таким образом, получают новые значения переменных y' = ln(y) и $x'_j = ln(x_j)$, с использованием которых строят линейную аппроксимацию

ļ,																																		
2	Į	ш	-2,97	-1,61	-0,85	-0,17	0,28	99'0	1,04	1,26	1,41	1,49	3,71	-1,61	1,22	2,06	2,59	3,22	4,06	4,58	4,79	5,00	99'0	-0,10	-0,70	-1,61	-1,99	-2,74	-3,27	-3,80	4,26	4,94		
	OCTATRU	a	0,098	0,003	-0,051	-0,164	-0,137	-0,095	-0,098	0,015	0,175	0,246	-0,104	0,003	-1,454	-1,102	-0,562	-0,221	-0,163	0,152	0,734	0,904	0,635	0,386	0,109	0,240	790,0-	0,081	690'0	0,115	0,136	0,078		***************************************
	0		6,30				9,31	9,73	10,11	10,45	10,76	10,91	5,36	7,56	8,94	10,13	11,20	12,17	13,07	13,91	14,70	15,08	10,46	9,46	8,58	7,80	7,11	6,51	5,97	5,48	5,05	4,31		
Į			0	_		ļ		_				m						0		_							_		0					
5		() ₊	0,269	0.07	#H/I	#	批	STMKA		0,054		3,036	ISI ISI	c-1;n-k]		EHTOB	b ₀	0,269	Spo	70,0	t _{b0}	3,810	3HAYINIV	ИИ	KHAA		EHME	þ	1,30	OV C WO	0):(0	Fp	38,135	
	S	линейн	0,264	0,017	井口	###	五二	ACTATM	n-k	56	ď	490,052	E 3HAYEHIV	F[0,05;k-1;n-l	3,3690	ЭФФИПИ	þ	0,264	Sp1	0,017	•	15,105	SHAYMM	KCMMAL	Я НАДЕ)		ТЕЛЬНОЕ УРАВНЕНИ	þ,	0,264	00/1/4/00	0011) 06	R ²	0,974	***************************************
	ם	PE3YIILTATL	0,498	0,017	0,045	26	0,054	MOHH/	Se	0,045	Σe²	0,054	АБЛИЧНЫЕ (t[0,05;n-k]	2,0555		b ₂	0,498	Sp2	0,017	t _{b2}	28,475	3HAYMM	НКА АППРС	OKCHIMALLIV		ВИТЕЛЬНС	þ ₂	0,498	N 04. 150	,509 e [.] .0,264 d 0,496 (v I	SE ²	7,83	
1	ţ	ΡE	-3,082	0,158	0,983	490,052	3,036	PETPECC	R²	0,983	ΣE3	3,0362	TA	P,% t	95	ОЦЕНИ	b ₃	-3,082	Sp3	0,158	t ₆₃	-19,443	SHAYMM:	OULE	AUIIPO		ДЕЙСТВИ	þ3	-3,082	טעט טענ	n.a ene'	Se ²	0,205	
t													-					i					.,	-										
	ИЕ	In(t/1000)	000'0	000'0	000'0	000'0	000'0	000'0	000'0	000'0	000'0	000'0	000'0	000'0	000'0	000'0	0000	0000'0	000'0	000'0	000'0	000'0	-0,105	-0.073	-0.041	-0,010	0,020	0,049	0,077	0,104	0,131	0,182		
	30BAH	n)u	2,30							2,30	2,30	2,30	1,61	2,30	2,64	2,89	3,09	3,26	3,40	3,53	3,64	3,69	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30		
I	PEOEPA30BAHI	ln(s)	1,61	2,30	2,64	2,89	3,09	3,26	3,40	3,53	3,64	3,69	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30		Secretary of the second
5		In(0s)	<u>ب</u> 80	2,0	2,1	2,2	2.2	2,3	2,3	2,3	2,4	2,4	1,7	2,0	2,3	2,4		2,5	2,6	2,6	2,6	2,7	2,3	2.2	2,1	2,0	2,0	1,9	<u></u>	1,7	1,6	1,4		The same of the sa
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		_	0	_	0	0	0	0	0	0		
1	t°C	8	1000	100	100	100	100	100	100	100	100	100	100	100	100	100	1000	1000	1000	1000	1000	1000	900	930	960	990	1020	1050	1080	=======================================	1140	120		
	u, 1/c	8	10	10	10	10	10	10	10	10	10	10	2	10	14	<u>0</u>	22	26	30	34	38	40	10	10	9	10	9	10	10	10	10	10		
Ц.	%	<u>×</u>	2	10	4	9	22	26	30	34	38	40	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10		The second second
1	оѕ, МП≀	3	6,2	9'1	8,3	0'6	9,5	86	10,2	10,4	10,6	10,7	5,5	9'1	10,4	11,2	11.8	12,4	13,2	13,8	14,0	14,2	86	9,1	8,5	9'/	7.2	6,4	5,9	5,4	4,9	4,2		
	읟	U/U	,-	7	က	4	5	9	7	00	6	9	,-	2	c	4	5	9	1	00	6	9	,-	N	က	4	2	9	1	00	6	10		
			m	4		-		-				2	3	4	V-S	9			19		21				Table 1			28				2210	33	

Рис. 8.3. Рабочий лист для построения и оценивания степенной аппроксимации

 $y'=b'_0+\sum b'_j x'_j$. В заключение необходимо перейти от значений коэффициентов b'_0 и b'_j к коэффициентам b_0 и b_j исходного уравнения. Применительно к уравнениям, подобным зависимости (8.6), обратные преобразования выполняются следующим образом: $b_j=b'_j$ и $b_0=exp\left(b'_0\right)$.

Линеаризующие преобразования выполнены в ячейках G3:J32. Например, в G3, H3, I3 и J3 запрограммировано:

G3:=
$$ln(B3)$$
, H3:= $ln(C3)$, I3:= $ln(D3)$, J3:= $ln(E3/1000)$.

Для построения линейной аппроксимация использована функция ЛИНЕЙН(). С учетом особенностей ее применения (приложение 11) сначала выделили блок ячеек L3:O3. Затем в ячейку L3 запрограммировали =ЛИНЕЙН(G3:G32;H3:J32;;ИСТИНА).

после чего нажали комбинацию клавиш <Ctr>+-<Shift>+-<Inter>. Результаты также выводятся в ячейки L3:О3. Символы #H/Д, которые в MS Excel обычно указывают на ошибку при обращении к функции, в данном случае содержательного значения не имеют. Смысл остальных результатов иллюстрируется рис. 8.4.

В ячейках L9:N12 воспроизведены характеристики статистической надежности линейной аппроксимации. Их обозначения введены с клавиатуры, а значения принимаются ссылкой на соответствующие результаты функции ЛИНЕЙН():

L10:	=L5,	M10:	=M5,
N10:	=M6,	L12:	=L7,
М12.	-M7 N12	· -I6	

4	K	L	M	N	0	P
1						
2		PE3	⁄ЛЬТАТ	ы лине	ЙН()	
3		b ₃	b ₂	b ₁	b ₀	
4		S _{b3}	S _{b2}	S _{b1}	S _{b0}	
5		R²	Se	#Н/Д	#Н/Д	********
6		Fp	n-k	#Н/Д	#Н/Д	
7		ΣE²	∑e²	#Н/Д	#Н/Д	
8						

Рис. 8.4. – Смысл результатов работы функции ЛИНЕЙН()

В ячейках L15:N15 записаны значения доверительной вероятности (принято p=95%), также табличные значения чисел Стьюдента и Фишера

N15: = $FPAC\Pi O EP(1-L15/100;3;N10)$.

Далее с их помощью оцениваются значимость коэффициентов линейной аппроксимации (в ячейках L17:O23) и ее статистическая надежность (в ячейках L25:O25).

Для оценки значимости коэффициентов регрессии сначала в ячейки L18:О118 воспроизводятся их значения

а в ячейках L20:О20 – значения соответствующих стандартных отклонений:

Затем в ячейках L22:O22 вычисляются расчетные числа Стьюдента. Например

$$L22: =L18/L20.$$

Выводы относительно значимости коэффициентов регрессии программируются в ячейках L23:O23 с применением функции ЕСЛИ(). Например

L23: =ECЛИ(ABS(L22)>\$M\$15;"3HAЧИМ";"HE 3HAЧИМ").

Такая же функция применяется для вывода относительно надежности линейной аппроксимации в ячейке L25

=ЕСЛИ(N12>N15;"НАДЕЖНАЯ";"НЕ НАДЕЖНАЯ").

Действительные коэффициенты исходной зависимости (8.6) определяются в ячейках L29:O29

L29: =L18, M29: =M18, N29: =N18, O29: =EXP(O18).

Для оценивания статистической надежности действительного уравнения сначала вычисляются оценки значений отклика (в ячейках Q3:Q32), квадраты остаточных (ячейки R3:R32) и объясненных (ячейки S3:S32) отклонений. Например

O3: =\$O\$29*C3^\$N\$29*D3^\$M\$29*(E3/1000)^\$L\$29;

R3: = $(Q3-B3)^2$;

Q3: $=(B3-CP3HA4(\$B\$3:\$B\$32))^2$.

Далее, в ячейках L31:О31 вычисляются остаточная и объясненная дисперсии, показатель достоверности аппроксимации и соответствующее расчетное число Фишера

L31: =CYMM(R3:R32)/((CYËT(R3:R32)-CYËT(L18:O18)));

M31: =CУММ(S3:S32)/(СЧЁТ(L18:O18)-1);

N31: =1-L31/M31;

O31: =M31/L31.

Вывод относительно надежности действительного уравнения запрограммирован в ячейке L32

=ECЛИ(O31>N15;"НАДЕЖНОЕ";"НЕ НАДЕЖНОЕ").

Полученные результаты позволяют сделать следующие выводы.

1. Для условий выполненного эксперимента зависимость напряжения текучести от термомеханических параметров процесса горячей пластической деформации имеет вид

$$\sigma_s = 1.309 \epsilon^{0.264} u^{0.498} (t/1000)^{-3.082}$$
.

2. С доверительной вероятностью 95% данная аппроксимация является статистически надежным отображением влияния термомеханических параметров на напряжение текучести, так как рассчитанное число Фишера F_n =330,501 больше табличного F_{95} =2,9752.

Для иллюстрации качества аппроксимации можно построить график соответствия расчетных и экспериментальных значений (рис. 8.5).

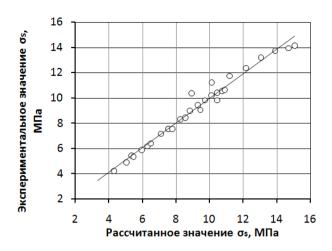


Рис. 8.5. – График соответствия расчетных и экспериментальных значений напряжения текучести

Для построения графика соответствия необходимо применить диаграмму типа «Точечная». При выборе данных значения для оси абсцисс задаются ссылкой на ячейки Q3:Q32, а значения для оси ординат - ссылкой на ячейки B3:B32. Далее необходимо добавить линейный тренд, т. к. на подобные графики наносят именно прямую линию. Чем ближе угол наклона линии к 45 градусам и чем меньше рассеяние точек относительно ее, тем точнее полученное уравнение отображает исследуемую зависимость.

8.5. Контрольные вопросы

- 1. Поясните сущность и укажите этапы множественного регрессионного анализа.
 - 2. Укажите допущения множественного регрессионного анализа.
 - 3. Запишите модель множественного регрессионного анализа.
 - 4. Что представляет собой уравнение множественной регрессии?
 - 5. Как определить качество уравнения множественной регрессии?
- 6. Как график соответствия расчетных и экспериментальных значений отклика характеризует качество аппроксимации?